Skip to main content
Log in

Evaluation of nonlinear optical behavior of mouse colon cancer cell line CT26 in hyperthermia treatment

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Hyperthermia treatment can induce component changes on cell. This study explored the potential of Z-scan to improve accuracy in the identification of subtle differences in mouse colon cancer cell line CT26 during hyperthermia treatment. Twenty-one samples were subjected individually to treatment of hyperthermia at 41, 43, and 45 °C. Each hyperthermia treatment was done in six different time (15, 30, 45, 60, 75, and 90 min). Two optical setups were used to investigate the linear and nonlinear optical behavior of samples. Prior to the Z-scan technique, all samples were fixed with 1 mL of 5% paraformaldehyde. The linear optical setup indicated that extinction coefficient cannot monitor cell changes at different treatment regimes. But the nonlinear behavior of CT26 in all hyperthermia treatment regimens was different. By increasing the time and/or temperature of hyperthermia treatments, change in the sign of nonlinear refractive index from negative to positive occurred in earlier time intervals. This phenomenon was seen for 41, 43, and 45 °C in 75, 60, and 45 min, respectively. The results showed that the Z-scan technique is a reliable method with the potential to characterize cell changes during hyperthermia treatment regimes. Nonlinear refractive index can be used as a new index for evaluation of cell damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  2. Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamrava SK (2016) Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. J Control Release 235:205–221. https://doi.org/10.1016/j.jconrel.2016.05.062

    Article  CAS  PubMed  Google Scholar 

  3. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag P (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–497. https://doi.org/10.1016/S1470-2045(02)00818-5

    Article  CAS  PubMed  Google Scholar 

  4. Horsman MR, Overgaard J (2007) Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol 19:418–426. https://doi.org/10.1016/j.clon.2007.03.015

    Article  CAS  Google Scholar 

  5. Kim J, Hahn E, Tokita N (1978) Combination hyperthermia and radiation therapy for cutaneous malignant melanoma. Cancer 41:2143–2148. https://doi.org/10.1002/1097-0142(197806)41:6%3C2143::AID-CNCR2820410610%3E3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  6. Rao W, Deng Z, Liu J (2009) A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Crit Rev Biomed Eng 38:101–116. https://doi.org/10.1615/CritRevBiomedEng.v38.i1.80

    Article  Google Scholar 

  7. Hehr T, Wust P, Bamberg M, Budach W (2003) Current and potential role of thermoradiotherapy for solid tumours. Oncol Res Treat 26:295–302. https://doi.org/10.1159/000071628

    Article  CAS  Google Scholar 

  8. Baronzio GF, Hager ED (2008) Hyperthermia in cancer treatment: a primer. Springer Science & Business Media

  9. Kerr JF, Winterford CM, Harmon BV (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer 73:2013–2026. https://doi.org/10.1002/1097-0142(19940415)73:8%3C2013::AID-CNCR2820730802%3E3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  10. Roti Roti JL (2008) Cellular responses to hyperthermia (40–46 C): cell killing and molecular events. Int J Hyperth 24:3–15. https://doi.org/10.1080/02656730701769841

    Article  CAS  Google Scholar 

  11. Mantso T, Goussetis G, Franco R, Botaitis S, Pappa A, Panayiotidis M (2016) Effects of hyperthermia as a mitigation strategy in DNA damage-based cancer therapies. Semin Cancer Biol 37–38(Supplement C):96–105. https://doi.org/10.1016/j.semcancer.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  12. Moussavi M, Haddad F, Matin M, Iranshahi M, Rassouli F (2018) Efficacy of hyperthermia in human colon adenocarcinoma cells is improved by auraptene. Biochem Cell Biol 96:32–37. https://doi.org/10.1139/bcb-2017-0146

    Article  CAS  PubMed  Google Scholar 

  13. van den Tempel N, Laffeber C, Odijk H, van Cappellen WA, van Rhoon GC, Franckena M, Kanaar R (2017) The effect of thermal dose on hyperthermia-mediated inhibition of DNA repair through homologous recombination. Oncotarget 8:44593–44604. https://doi.org/10.18632/oncotarget.17861

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gomaa IE, Gaber SAA, Bhatt S, Liehr T, Glei M, El-Tayeb TA, Abdel-Kader MH (2015) In vitro cytotoxicity and genotoxicity studies of gold nanoparticles-mediated photo-thermal therapy versus 5-fluorouracil. J Nanopart Res 2:1–11. https://doi.org/10.1007/s1105

    Article  Google Scholar 

  15. Nemani KV, Ennis RC, Griswold KE, Gimi B (2015) Magnetic nanoparticle hyperthermia induced cytosine deaminase expression in microencapsulated E. coli for enzyme–prodrug therapy. J Biotechnol 203(Supplement C):32–40. https://doi.org/10.1016/j.jbiotec.2015.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakagawa Y, Kajihara A, Takahashi A, Murata AS, Matsubayashi M, Ito SS, Ota I, Nakagawa T, Hasegawa M, Kirita T (2018) BRCA2 protects mammalian cells from heat shock. Int J Hyperth 34:795–801. https://doi.org/10.1080/02656736.2017.1370558

    Article  CAS  Google Scholar 

  17. Ghader A, Ardakani AA, Ghaznavi H, Shakeri-Zadeh A, Minaei SE, Mohajer S, Ara MHM (2018) Evaluation of nonlinear optical differences between breast cancer cell lines SK-BR-3 and MCF-7; an in vitro study. Photodiagn Photodyn Ther 23:171–175. https://doi.org/10.1016/j.pdpdt.2018.06.015

    Article  Google Scholar 

  18. Abbasian Ardakani A, Rajaee J, Khoei S (2017) Diagnosis of human prostate carcinoma cancer stem cells enriched from DU145 cell lines changes with microscopic texture analysis in radiation and hyperthermia treatment using run-length matrix. Int J Radiat Biol 93:1248–1256. https://doi.org/10.1080/09553002.2017.1359429

    Article  CAS  PubMed  Google Scholar 

  19. Park J, Hwang M, Choi B, Jeong H, Jung JH, Kim HK, Hong S, Park JH (2017) Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis. Anal Chem 89:6695–6701. https://doi.org/10.1021/acs.analchem.7b00911

    Article  CAS  PubMed  Google Scholar 

  20. Sheik-Bahae M, Said AA, Wei T-H, Hagan DJ, Van Stryland EW (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26:760–769. https://doi.org/10.1109/3.53394

    Article  CAS  Google Scholar 

  21. Ghader A, Majles Ara MH, Mohajer S, Divsalar A (2018) Investigation of nonlinear optical behavior of creatinine for measuring its concentration in blood plasma. Optik 158:231–236. https://doi.org/10.1016/j.ijleo.2017.12.063

    Article  CAS  Google Scholar 

  22. de Queiroz Mello AP, Albattarni G, Espinosa DHG, Reis D, Neto AMF (2018) Structural and nonlinear optical characteristics of in vitro glycation of human low-density lipoprotein, as a function of time. Braz J Phys 48(6):560–570. https://doi.org/10.1007/s13538-018-0600-x

    Article  Google Scholar 

  23. Hosseinzadeh M, Salmani S, Majles Ara M, Mohajer S (2018) The simple optical methods for early diagnosis of selected benign and malignant brain tumors of human. J of Nonlinear Optical Phys & Materials 27(03):1850033. https://doi.org/10.1142/S0218863518500339

    Article  CAS  Google Scholar 

  24. Salman M, Hosein MAM, Mohammad N (2016) Nonlinear optical investigation of normal ovarian cells of animal and cancerous ovarian cells of human in-vitro. Optik 127:3867–3870. https://doi.org/10.1016/j.ijleo.2016.01.072

  25. Mohajer S, Ara MHM, Serahatjoo L (2016) Effects of graphene quantum dots on linear and nonlinear optical behavior of malignant ovarian cells. J of Nanophotonics 10:036014. https://doi.org/10.1117/1.JNP.10.036014

    Article  Google Scholar 

  26. Warters RL, Henle KJ (1982) DNA degradation in Chinese hamster ovary cells after exposure to hyperthermia. Cancer Res 42:4427–4432

    CAS  PubMed  Google Scholar 

  27. Laszlo A (1988) Evidence for two states of thermotolerance in mammalian cells. Int Hyperth 4:513–526. https://doi.org/10.3109/02656738809027695

    Article  CAS  Google Scholar 

  28. Anai H, Maehara Y, Sugimachi K (1988) In situ nick translation method reveals DNA strand scission in HeLa cells following heat treatment. Cancer Lett 40:33–38. https://doi.org/10.1016/0304-3835(88)90259-5

    Article  CAS  PubMed  Google Scholar 

  29. Sellins KS, Cohen JJ (1991) Hyperthermia induces apoptosis in thymocytes. Radiat Res 126:88–95. https://doi.org/10.2307/3578175

    Article  CAS  PubMed  Google Scholar 

  30. Takano YS, Harmon BV, Kerr JF (1991) Apoptosis induced by mild hyperthermia in human and murine tumour cell lines: a study using electron microscopy and DNA gel electrophoresis. J Pathol 163:329–336. https://doi.org/10.1002/path.1711630410

    Article  CAS  PubMed  Google Scholar 

  31. Yonezawa M, Otsuka T, Matsui N, Tsuji H, Kato KH, Moriyama A, Kato T (1996) Hyperthermia induces apoptosis in malignant fibrous histiocytoma cells in vitro. Int J Cancer 66:347–351. https://doi.org/10.1002/(SICI)1097-0215(19960503)66:3%3C347::AID-IJC14%3E3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  32. Cox A, DeWeerd AJ, Linden J (2002) An experiment to measure Mie and Rayleigh total scattering cross sections. Am J Phys 70:620–625. https://doi.org/10.1119/1.1466815

    Article  Google Scholar 

  33. Tuchin VV (2007) Tissue optics: light scattering methods and instruments for medical diagnosis, vol 13. SPIE press, Bellingham

    Book  Google Scholar 

  34. Maeda D, Iwai T, Namiki M (2018) Diffuse light reflectometry for measuring scattering and absorption coefficients of a biological tissue. In: Biomedical Imaging and Sensing Conference. Int Society for Optics and Photonics, p 107111L. https://doi.org/10.1117/12.2319355

  35. Marshall WF, Young KD, Swaffer M, Wood E, Nurse P, Kimura A, Frankel J, Wallingford J, Walbot V, Qu X, Roeder AH (2012) What determines cell size? BMC Biol 10:101. https://doi.org/10.1186/1741-7007-10-101

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nishidate I, Mustari A, Kawauchi S, Sato S, Sato M, Kokubo Y (2017) In vivo imaging of tissue scattering parameter and cerebral hemodynamics in rat brain with a digital red-green-blue camera. SPIE BiOS Int Society for Opt and Photonics, 100500O-100508. https://doi.org/10.1117/12.2251109

  37. Boyd RW (2008) Nonlinear opt. Academic Press

  38. Behravan M, Salmani S, Kavianfar A, Gharibi A, Majles Ara M (2017) Early diagnosis by comparison between interferometry and Z-scan methods to measure NLO refraction of human skin cancer (BCC and SCC) in vitro. J Nonlinear Optical Phys Mater 26(03):1750033. https://doi.org/10.1142/S0218863517500333

    Article  CAS  Google Scholar 

  39. Salman M, Hossein MAM, Kamran KS, Shayan M (2016) Optical discrimination of benign and malignant oral tissue using Z-scan technique. Photodiagn Photodyn Ther 16(Supplement C):54–59. https://doi.org/10.1016/j.pdpdt.2016.08.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Abbasian Ardakani or Samideh Khoei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghader, A., Gazestani, A.M., Minaei, S.E. et al. Evaluation of nonlinear optical behavior of mouse colon cancer cell line CT26 in hyperthermia treatment. Lasers Med Sci 34, 1627–1635 (2019). https://doi.org/10.1007/s10103-019-02759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02759-8

Keywords

Navigation