Skip to main content

Advertisement

Log in

Effects of 915 nm laser irradiation on human osteoblasts: a preliminary in vitro study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Photobiomodulation (PBM) is a non-invasive treatment that uses laser or led devices making its effects a response to light and not to heat. The possibility of accelerating dental implant osteointegration and orthodontic movements and the need to treat refractory bone lesions, such as bisphosphonate related osteonecrosis of the jaws, has led researchers to consider the effects of PBM on bone for dentistry purposes. The aim of our study was to investigate the effects of 915 nm light supplied with a GaAs diode laser on human osteoblasts in vitro. Osteoblasts were isolated from mandibular cortical bone of a young healthy donor. The irradiation parameters were as follows: doses = 5, 15 and 45 J/cm2; power densities = 0.12 and 1.25 W/cm2; and irradiation times = 41.7, 125 and 375 s. We performed one irradiation per day for 3 and 6 days to study proliferation and differentiation, respectively. Microscopic analysis showed a greater amount of bone nodules in samples treated with 5 J/cm2 and 0.12 W/cm2 compared to controls (56.00 ± 10.44 vs 19.67 ± 7.64, P = 0.0075). Cell growth and quantification of calcium deposition did not show any differences when comparing irradiated and non-irradiated samples. Photobiomodulation, with the parameters investigated in the present study, positively modulated the mineralization process in human osteoblasts, inducing the formation of a greater amount of bone nodules, but did not increase cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mester E (1966) The use of the laser beam in therapy. Orv Hetil 107:1012–1016

    PubMed  CAS  Google Scholar 

  2. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B Biol 49:1–17

    Article  CAS  Google Scholar 

  3. Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26:3503–3509

    Article  PubMed  CAS  Google Scholar 

  4. Walsh LJ (1997) The current status of low level laser therapy in dentistry. Part 1. Soft tissue applications. Aust Dent J 42:247–254

    Article  PubMed  CAS  Google Scholar 

  5. Walsh LJ (1997) The current status of low level laser therapy in dentistry. Part 2. Hard tissue applications. Aust Dent J 42:302–306

    Article  PubMed  CAS  Google Scholar 

  6. Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy—an update. Dose Response 9:602–618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Heymann PGB, Ziebart T, Kammerer PW et al (2016) The enhancing effect of a laser photochemotherapy with cisplatin or zolendronic acid in primary human osteoblasts and osteosarcoma cells in vitro. J Oral Pathol Med 45:803–809

    Article  PubMed  CAS  Google Scholar 

  8. Karoussis IK, Kyriakidou K, Psarros C, Lang NP, Vrotsos IA (2017) Nd:YAG laser radiation (1.064 nm) accelerates differentiation of osteoblasts to osteocytes on smooth and rough titanium surfaces in vitro. Clin Oral Implants Res 28:785–790

    Article  PubMed  Google Scholar 

  9. Oliveira FA, Matos AA, Santesso MR et al (2016) Low intensity lasers differently induce primary human osteoblast proliferation and differentiation. J Photochem Photobiol B Biol 163:14–21

    Article  CAS  Google Scholar 

  10. Crisan L, Soritau O, Baciut M, Baciut G, Crisan BV (2015) The influence of laser radiation on human osteoblasts cultured on nanostructured composite substrates. Clujul Med 88:224–232

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–166

    Article  PubMed  CAS  Google Scholar 

  12. Ueda Y, Shimizu N (2003) Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21:271–277

    Article  PubMed  Google Scholar 

  13. Tschon M, Incerti Parenti S, Cepollaro S, Checchi L, Fini M (2015) Photobiomodulation with low-level diode laser promotes osteoblast migration in an in vitro micro wound model. J Biomed Opt 20:078002–078010

    Article  Google Scholar 

  14. Asai T, Suzuki H, Kitayama M et al (2014) The long-term effects of red light-emitting diode irradiation on the proliferation and differentiation of osteoblast-like MC3T3-E1 cells. Kobe J Med Sci 60:E12–E18

    PubMed  Google Scholar 

  15. Migliario M, Pittarella P, Fanuli M, Rizzi M, Renò F (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29:1463–1467

    Article  PubMed  Google Scholar 

  16. Incerti Parenti S, Checchi L, Fini M, Tschon M (2014) Different doses of low-level laser irradiation modulate the in vitro response of osteoblast-like cells. J Biomed Opt 19:108002–108007

    Article  PubMed  CAS  Google Scholar 

  17. Kanenari M, Zhao J, Abiko Y (2011) Enhancement of microtubule-associated protein-1 alpha gene expression in osteoblasts by low level laser irradiation. Laser Ther 20:47–51

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kiyosaki T, Mitsui N, Suzuki N, Shimizu N (2010) Low-level laser therapy stimulates mineralization via increased Runx2 expression and ERK phosphorylation in osteoblasts. Photomed Laser Surg 28(Suppl 1):S167–S172

    Article  PubMed  CAS  Google Scholar 

  19. Hirata S, Kitamura C, Kukushima H et al (2010) Low-level laser irradiation enhances BMP-induced osteoblast differentiation by stimulating the BMP/Smad signaling pathway. J Cell Biochem 111:1445–1452

    Article  PubMed  CAS  Google Scholar 

  20. Shimizu N, Mayahara K, Kiyosaki T et al (2007) Low-intensity laser irradiation stimulates bone nodule formation via insulin-like growth factor-I expression in rat calvarial cells. Lasers Surg Med 39:551–559

    Article  PubMed  Google Scholar 

  21. Hamajima S, Hiratsuka K, Kiyama-Kishikawa M et al (2003) Effect of low-level laser irradiation on osteoglycin gene expression in osteoblasts. Lasers Med Sci 18:78–82

    Article  PubMed  CAS  Google Scholar 

  22. Yamamoto M, Tamura K, Hiratsuka K, Abiko Y (2001) Stimulation of MCM3 gene expression in osteoblast by low level laser irradiation. Lasers Med Sci 16:213–217

    Article  PubMed  CAS  Google Scholar 

  23. Huang TH, Lu YC, Kao CT (2012) Low-level diode laser therapy reduces lipopolysaccharide (LPS)-induced bone cell inflammation. Lasers Med Sci 27:621–627

    Article  PubMed  Google Scholar 

  24. Bayat M, Virdi A, Rezaei F, Chien S (2017) Comparison of the in vitro effects of low-level laser therapy and low-intensity pulsed ultrasound therapy on bony cells and stem cells. Progress Biophys Molec Biol 1–13

  25. Beresford JN, Gallagher JA, Gowen M et al (1984) The effects of monocyte-conditioned medium and interleukin 1 on the synthesis of collagenous and non-collagenous proteins by mouse bone and human bone cells in vitro. Biochim Biophys Acta 801:58–65

    Article  PubMed  CAS  Google Scholar 

  26. Gregory CA, Gunn WG, Peister A, Prockop DJ (2004) An alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329:77–84

    Article  PubMed  CAS  Google Scholar 

  27. Kaur G, Dufour JM (2012) Cell lines: valuable tools or useless artifacts. Spermatogenesis 2:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  28. Incerti Parenti S, Panseri S, Gracco A et al (2013) Effect of low-level laser irradiation on osteoblast-like cells cultured on porous hydroxyapatite scaffolds. Ann Ist Super Sanita 49:255–260

    PubMed  Google Scholar 

  29. Stein E, Koehn J, Sutter W et al (2008) Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr 120:112–117

    Article  PubMed  CAS  Google Scholar 

  30. Renno ACM, McDonnell PA, Parizotto NA, Laakso E-L (2007) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25:275–280

    Article  PubMed  CAS  Google Scholar 

  31. Pagin MT, de Oliveira FA, Oliveira RC et al (2014) Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 29:55–59

    Article  PubMed  Google Scholar 

  32. Fujihara NA, Hiraki KRN, Marques MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38:332–336

    Article  PubMed  Google Scholar 

  33. Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354

    Article  PubMed  CAS  Google Scholar 

  34. Bloise N, Ceccarelli G, Minzioni P et al (2013) Investigation of low-level laser therapy potentiality on proliferation and differentiation of human osteoblast-like cells in the absence/presence of osteogenic factors. J Biomed Opt 18:128006

    Article  PubMed  CAS  Google Scholar 

  35. Tang W, Tian J, Zheng Q et al (2015) Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts’ proliferation and differentiation. ACS Nano 9:7867–7873

    Article  PubMed  CAS  Google Scholar 

  36. Saracino S, Mozzati M, Martinasso G et al (2009) Superpulsed laser irradiation increases osteoblast activity via modulation of bone morphogenetic factors. Lasers Surg Med 41:298–304

    Article  PubMed  Google Scholar 

  37. Kim IS, Cho TH, Kim K, Weber FE, Hwang SJ (2010) High power-pulsed Nd:YAG laser as a new stimulus to induce BMP-2 expression in MC3T3-E1 osteoblasts. Lasers Surg Med 42:510–518

    Article  PubMed  Google Scholar 

  38. Belletti S, Uggeri J, Mergoni G et al (2015) Effects of 915 nm GaAs diode laser on mitochondria of human dermal fibroblasts: analysis with confocal microscopy. Lasers Med Sci 30:375–381

    Article  PubMed  Google Scholar 

  39. Tunér J, Hode L (2004) The laser therapy handbook. Prima Books, Grängesberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Mergoni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mergoni, G., Vescovi, P., Belletti, S. et al. Effects of 915 nm laser irradiation on human osteoblasts: a preliminary in vitro study. Lasers Med Sci 33, 1189–1195 (2018). https://doi.org/10.1007/s10103-018-2453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2453-5

Keywords

Navigation