Skip to main content
Log in

Photobiomodulation therapy protects skeletal muscle and improves muscular function of mdx mice in a dose-dependent manner through modulation of dystrophin

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aimed to analyze the protective effects of photobiomodulation therapy (PBMT) with combination of low-level laser therapy (LLLT) and light emitting diode therapy (LEDT) on skeletal muscle tissue to delay dystrophy progression in mdx mice (DMDmdx). To this aim, mice were randomly divided into five different experimental groups: wild type (WT), placebo-control (DMDmdx), PBMT with doses of 1 J (DMDmdx), 3 J (DMDmdx), and 10 J (DMDmdx). PBMT was performed employing a cluster probe with 9 diodes (1 x 905nm super-pulsed laser diode; 4 x 875nm infrared LEDs; and 4 x 640nm red LEDs, manufactured by Multi Radiance Medical®, Solon - OH, USA), 3 times a week for 14 weeks. PBMT was applied on a single point (tibialis anterior muscle—bilaterally). We analyzed functional performance, muscle morphology, and gene and protein expression of dystrophin. PBMT with a 10 J dose significantly improved (p < 0.001) functional performance compared to all other experimental groups. Muscle morphology was improved by all PBMT doses, with better outcomes with the 3 and 10 J doses. Gene expression of dystrophin was significantly increased with 3 J (p < 0.01) and 10 J (p < 0.01) doses when compared to placebo-control group. Regarding protein expression of dystrophin, 3 J (p < 0.001) and 10 J (p < 0.05) doses also significantly showed increase compared to placebo-control group. We conclude that PBMT can mainly preserve muscle morphology and improve muscular function of mdx mice through modulation of gene and protein expression of dystrophin. Furthermore, since PBMT is a non-pharmacological treatment which does not present side effects and is easy to handle, it can be seen as a promising tool for treating Duchenne’s muscular dystrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mah JK, Korngut L, Fiest KM, Dykeman J, Day LJ, Pringsheim T, Jette NA (2016) Systematic review and meta-analysis on the epidemiology of the muscular dystrophies. Can J Neurol Sci 43(1):163–177

    Article  PubMed  Google Scholar 

  2. Macedo AB, Moraes LHR, Mizobuti DS, Fogaça AR, Moraes FSR, Hermes TA et al (2015) Low-level laser therapy (LLLT) in dystrophin-deficient muscle cells: effects on regeneration capacity, inflammation response and oxidative stress. PLoS One 10(6):e0128567

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ryder S, Leadley RM, Armstrong N, Westwood M, de Kock S, Butt T, Jain M, Kleijnen J (2017) The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet J Rare Diseases 12(1):79

    Article  CAS  Google Scholar 

  4. Fayssoil A, Abasse S, Silverston K (2017) Cardiac involvement classification and therapeutic Management in Patients with Duchenne muscular dystrophy. J Neuromuscul Dis 4(1):17–23

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pane M, Pane M, Scalise R, Berardinelli A, D'Angelo G, Ricotti V, Alfieri P, Moroni I, Hartley L, Pera MC, Baranello G, Catteruccia M, Casalino T, Romeo DM, Graziano A, Gandioli C, Bianco F, Mazzone ES, Lombardo ME, Scoto M, Sivo S, Palermo C, Gualandi F, Sormani MP, Ferlini A, Bertini E, Muntoni F, Mercuri E (2013) Early neurodevelopmental assessment in Duchenne muscular dystrophy. Neuromuscul Disord 23:451–455

    Article  PubMed  Google Scholar 

  6. Wu B, Cloer C, Lu P, Milazi S, Shaban M, Shah SN, Marston-Poe L, Moulton HM, QL L (2014) Exon skipping restores dystrophin expression, but fails to prevent disease progression in later stage dystrophic dko mice. Gene Ther 21:785–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Falzarano M, Scotton C, Passarelli C, Ferlini A (2015) Duchenne muscular dystrophy: from diagnosis to therapy. Molecules 20:18168–18184

    Article  CAS  PubMed  Google Scholar 

  8. Gouveia TL, Kossugue PM, Paim JF, Zatz M, Anderson LV, Nigro V, Vainzof M (2007) A new evidence for the maintenance of the sarcoglycan complex in muscle sarcolemma in spite of the primary absence of δ-sG protein. J Mol Med 85:415–420

    Article  CAS  PubMed  Google Scholar 

  9. Allen DG, Whitehead NP, Froehner SC (2015) Absence of dystrophin disrupts skeletal muscle signaling: roles of ca 2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol Rev 96:223–305

    Google Scholar 

  10. Verhaert D, Richards K, Rafael-Fortney JA, Raman SV (2011) Cardiac involvement in patients with muscular dystrophies: magnetic resonance imaging phenotype and genotypic considerations. Circ Cardiovasc Imaging 4(1):67–76

    Article  PubMed  PubMed Central  Google Scholar 

  11. Salam EA, Meguid IA, Korraa S (2007) Markers of oxidative stress and aging in Duchene muscular dystrophy patients and the possible ameliorating effect of he:ne laser. Acta Myologica 26:14–21

    PubMed Central  Google Scholar 

  12. McGreevy JW, Hakim CH, McIntosh MA, Duan D (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 8:195–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Serra F, Quarta M, Canato M, Toniolo L, De Arcangelis V, Trotta A, Spath L, Monaco L, Reggiani C, Naro F (2012) Inflammation in muscular dystrophy and the beneficial effects of non-steroidal anti-inflammatory drugs. Muscle Nerve 46:773–784

    Article  CAS  PubMed  Google Scholar 

  14. Angelini C (2007) The role of corticosteroids in muscular dystrophy: a critical appraisal. Muscle Nerve 36:424–435

    Article  CAS  PubMed  Google Scholar 

  15. Lim KRQ, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533–545

    Article  PubMed  PubMed Central  Google Scholar 

  16. Santos LA, Marcos RL, Tomazoni SS, Vanin AA, Antonialli FC, Grandinetti Vdos S, Albuquerque-Pontes GM, de Paiva PR, Lopes-Martins RÁ, de Carvalho Pde T, Bjordal JM, Leal-Junior EC (2014) Effects of pre-irradiation of low-level laser therapy with different doses and wavelengths in skeletal muscle performance, fatigue, and skeletal muscle damage induced by tetanic contractions in rats. Lasers Med Sci 29:1617–1626

  17. Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2004) Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 4:559–567

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez-Lima F, Barksdale BR, Rojas JC (2014) Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochem Pharmacol 88:584–593

    Article  CAS  PubMed  Google Scholar 

  19. Rojas JC, Gonzalez-Lima F (2013) Neurological and psychological applications of transcranial lasers and LEDs. Biochem Pharmacol 86:447–457

    Article  CAS  PubMed  Google Scholar 

  20. Avni D, Levkovitz S, Maltz OU (2005) Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg 23:273–277

    Article  CAS  PubMed  Google Scholar 

  21. Rizzi CF, Mauriz JL, Freitas Corrêa DS, Moreira AJ, Zettler CG, Filippin LI, Marroni NP, González-Gallego J (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-κB signaling pathway in traumatized muscle. Lasers Surg Med 38:704–713

    Article  PubMed  Google Scholar 

  22. Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho Pde T, Dal Corso S, Bjordal JM (2015) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci 30:925–939

    Article  PubMed  Google Scholar 

  23. Vanin AA, Verhagen E, Barboza SD, Costa LOP, Leal-Junior ECP (2017) Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: a systematic review and meta-analysis. Lasers Med Sci. https://doi.org/10.1007/s10103-017-2368-6

  24. Albuquerque-Pontes GM, Vieira RP, Tomazoni SS, Caires CO, Nemeth V, Vanin AA, Santos LA, Pinto HD, Marcos RL, Bjordal JM, de Carvalho Pde T, Leal-Junior EC (2015) Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci 30:59–66

    Article  PubMed  Google Scholar 

  25. Leal-Junior EC, de Almeida P, Tomazoni SS, de Carvalho PT, Lopes-Martins RÁ, Frigo L, Joensen J, Johnson MI, Bjordal JM (2014) Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression. PLoS One 9(3):e89453

    Article  PubMed  PubMed Central  Google Scholar 

  26. Silva AA, Leal-Junior EC, D'Avila Kde A, Serra AJ, Albertini R, França CM, Nishida JA, de Carvalho Pde T (2015) Pre-exercise low-level laser therapy improves performance and levels of oxidative stress markers in mdx mice subjected to muscle fatigue by high-intensity exercise. Lasers Med Sci 30:1719–1727

    Article  PubMed  Google Scholar 

  27. Nakamura A, Takeda S (2011) Mammalian models of Duchenne muscular dystrophy: pathological characteristics and therapeutic applications. J Biomed Biotechnol 2011:184393

    Article  PubMed  PubMed Central  Google Scholar 

  28. MacLennan PA, Edwards RH (1990) Proteinturnover is elevated in muscle of mdx mice in vivo. Biochem J 268(3):795–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alderton JM, Steinhardt RA (2000) How calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic Myotubes. Trends Cardiovasc Med 10:268–272

    Article  CAS  PubMed  Google Scholar 

  30. Cohn RD, Campbell KP (2000) Molecular basis of muscular dystrophies. Muscle Nerve 23:1456–1471

    Article  CAS  PubMed  Google Scholar 

  31. Shefer G, Barash I, Oron U, Halevy O (2003) Low-energy laser irradiation enhances de novo protein synthesis via its effects on translation-regulatory proteins in skeletal muscle myoblasts. Biochim Biophys Acta 1593:131–139

    Article  CAS  PubMed  Google Scholar 

  32. Luz MAM, Marques MJ, Santo Neto H (2002) Impaired regeneration of dystrophin-deficient muscle fibers is caused by exhaustion of myogenic cells. Braz J Med Biol Res 35:691–695

    Article  CAS  PubMed  Google Scholar 

  33. Rahimov F, Kunkel LM (2013) Cellular and molecular mechanisms underlying muscular dystrophy. J Cell Biol 201:499–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Onofre-Oliveira PCG, Santos ALF, Martins PM, Ayub-Guerrieri D, Vainzof M (2012) Differential expression of genes involved in the degeneration and regeneration pathways in mouse models for muscular dystrophies. NeuroMolecular Med 14:74–83

    Article  CAS  PubMed  Google Scholar 

  35. Gumerson JD, Michele DE (2011) The dystrophin-glycoprotein complex in the prevention of muscle damage. J Biomed Biotechnol 2011:210797

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rodriguez MC, Tarnopolsky MA (2003) Patients with dystrophinopathy show evidence of increased oxidative stress. Free Radic Biol Med 34:1217–1220

    Article  CAS  PubMed  Google Scholar 

  37. Stolzing A, Scutt A (2006) Age-related impairment of mesenchymal progenitor cell function. Aging Cell 5:213–224

    Article  CAS  PubMed  Google Scholar 

  38. Davies KJA (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83:301–310

    Article  CAS  PubMed  Google Scholar 

  39. Morel Y, Barouki R (1999) Repression of gene expression by oxidative stress. Biochem J 3:481–496

    Article  Google Scholar 

  40. Kaczor JJ, Hall JE, Payne E, Tarnopolsky MA (2007) Low intensity training decreases markers of oxidative stress in skeletal muscle of mdx mice. Free Radic Biol Med 43:145–154

    Article  CAS  PubMed  Google Scholar 

  41. Lim W, Kim J, Lim C, Kim S, Jeon S, Karna S, Cho M, Choi H, Kim O (2012) Effect of 635 nm light-emitting diode irradiation on intracellular superoxide anion scavenging independent of the cellular enzymatic antioxidant system. Photomed Laser Surg 30:451–459

    Article  CAS  PubMed  Google Scholar 

  42. Rybakova IN, Patel JR, Ervasti JM (2000) The dystrophin complex forms a mechanically strong link between the sarcolemma and Costameric actin. J Cell Biol 150:1209–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leal-Junior EC (2015) Photobiomodulation therapy in skeletal muscle: from exercise performance to muscular dystrophies. Photomed Laser Surg 33:53–54

Download references

Acknowledgements

This study received support from São Paulo Research Foundation (FAPESP) for Professor Ernesto Cesar Pinto Leal-Junior (grant number 2010/52404-0) and a PhD scholarship for Gianna Móes Albuquerque-Pontes (grant number 2014/05203-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Cesar Pinto Leal-Junior.

Ethics declarations

All experimental procedures were performed in accordance with the standards of the Brazilian College of Animal Experimentation (COBEA). All experimental protocols were submitted and approved by the Animal Experimentation Ethics Committee of our institution.

The study was conducted in accordance with policies and procedures of Brazilian laws and the Department of Health and Human Services in the USA.

Conflict of interests

Professor Ernesto Cesar Pinto Leal-Junior receives research support from Multi Radiance Medical (Solon, OH, USA), a PBMT device manufacturer. The remaining authors declare that they have no conflict of interests.

Ethical aspects

All experimental protocols were submitted and approved by the Animal Experimentation Ethics Committee of the University of Nove de Julho (UNINOVE) (Protocol AN0008.2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albuquerque-Pontes, G.M., Casalechi, H.L., Tomazoni, S.S. et al. Photobiomodulation therapy protects skeletal muscle and improves muscular function of mdx mice in a dose-dependent manner through modulation of dystrophin. Lasers Med Sci 33, 755–764 (2018). https://doi.org/10.1007/s10103-017-2405-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2405-5

Keywords

Navigation