Skip to main content

Advertisement

Log in

Comparison of the effect of root surface modification with citric acid, EDTA, and aPDT on adhesion and proliferation of human gingival fibroblasts and osteoblasts: an in vitro study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Root demineralization is used in Periodontics as an adjuvant for mechanical treatment. The aim of this study was to evaluate the effects of root surface modification with mechanic, chemical, and photodynamic treatments on adhesion and proliferation of human gingival fibroblasts and osteoblasts. Root fragments were treated by scaling and root planing (C—control group), EDTA (pH 7), citric acid plus tetracycline (CA—pH 1), and antimicrobial photodynamic therapy (aPDT) with toluidine blue O and red laser (pH 4). Cells were seeded (104 cells/well, 6th passage) on root fragments of each experimental group and cultured for 24, 48, and 72 h. Cells were counted in scanning electron microscopy images by a calibrated examiner. For fibroblasts, the highest number of cells were present at 72-h period (p < 0.05). EDTA group showed a very low number of cells in relation to CA group (p < 0.05). CA and aPDT group presented higher number of cells in all periods, but without differences between other treatment groups (p > 0.05). For osteoblasts, there was a significant increase in cell numbers for aPDT group at 72 h (p < 0.05). In conclusion, aPDT treatment provided a positive stimulus to osteoblast growth, while for fibroblasts, aPDT and CA had a tendency for higher cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hatfield CG, Baumhammers A (1971) Cytotoxic effects of periodontally involved surfaces of human teeth. Arch Oral Biol 16:465–468

    Article  CAS  PubMed  Google Scholar 

  2. Adriaens PA, Edwards CA, De Boever JA, Loesche WJ (1988) Ultrastructural observations on bacterial invasion in cementum and radicular dentin of periodontally diseased human teeth. J Periodontol 59:493–503

    Article  CAS  PubMed  Google Scholar 

  3. Alyahya A, Alqareer A (2017) Does the removal of cementum facilitate bacterial penetration into dentinal tubules in vitro? J Endod 43:1111–1115

    Article  PubMed  Google Scholar 

  4. Sudhakar R, Pratebha B (2015) Fibrous architecture of cementodentinal junction in disease: a scanning electron microscopic study. J Oral Maxillofac Pathol 19:325–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Polson AM, Caton J (1982) Factors influencing periodontal repair and regeneration. J Periodontol 53:617–625

    Article  CAS  PubMed  Google Scholar 

  6. Sant'Ana AC, Marques MM, Barroso TE, Passanezi E, de Rezende ML (2007) Effects of TGF-beta1, PDGF-BB, and IGF-1 on the rate of proliferation and adhesion of a periodontal ligament cell lineage in vitro. J Periodontol 78:2007–2017

    Article  Google Scholar 

  7. Karam PS, Sant'Ana AC, de Rezende ML, Greghi SL, Damante CA, Zangrando MS (2016) Root surface modifiers and subepithelial connective tissue graft for treatment of gingival recessions: a systematic review. J Periodontal Res 51:175–185

    Article  CAS  PubMed  Google Scholar 

  8. Blomlöf J, Blomlöf L, Lindskog S (1997) Effect of different concentrations of EDTA on smear removal and collagen exposure in periodontitis-affected root surfaces. J Clin Periodontol 24:534–537

    Article  PubMed  Google Scholar 

  9. Feist IS, Gde M, Carneiro SRS, Eduardo CP, Myiagi SPH, Marques MM (2003) Adhesion and growth of cultured human gingival fibroblast and periodontally involved root surfaces treated by Er:YAG laser. J Periodontol 74:1368–1375

    Article  PubMed  Google Scholar 

  10. Passanezi E, Damante CA, de Rezende ML, Greghi SL (2015) Lasers in periodontal therapy. Periodontol 67:268–291

    Article  Google Scholar 

  11. Damante CA, Ducati P, Ferreira R, Salmeron S, Zangrando MS, de Rezende ML, Sant’Ana AC, Greghi SL, Magalhães AC (2016) In vitro evaluation of adhesion/proliferation of human gingival fibroblasts on demineralized root surfaces by toluidine blue O in antimicrobial photodynamic therapy. Photodiagn Photodyn Ther 13:303–307

    Article  Google Scholar 

  12. Karam PSBH, Ferreira R, Oliveira RC, Greghi SLA, de Rezende MLR, Sant’Ana ACP, Zangrando MSR, Damante CA (2017) Stimulation of human gingival fibroblasts viability and growth by roots treated with high intensity lasers, photodynamic therapy and citric acid. Arch Oral Biol 81:1–6

    Article  CAS  PubMed  Google Scholar 

  13. Register AA (1973) Bone and cementum induction by dentin, demineralized in situ. J Periodontol 44:49–54

    Article  CAS  PubMed  Google Scholar 

  14. Register AA, Burdick FA (1975) Accelerated reattachment with cementogenesis to dentin, demineralized in situ. I. Optimum range. J Periodontol 46:646–655

    Article  CAS  PubMed  Google Scholar 

  15. Chaves E, Cox CF, Morrison E, Caffesse R (1993) The effect of citric acid application on periodontally involved root surfaces. II. An in vitro scanning electron microscopic study. Int J Periodontics Restorative Dent 13:188–196

    CAS  PubMed  Google Scholar 

  16. Wen CR, Caffesse RG, Morrison EC, Nasjleti CE, Parikh UK (1992) In vitro effects of citric acid application techniques on dentin surfaces. J Periodontol 63:883–889

    Article  CAS  PubMed  Google Scholar 

  17. Garret JS, Crigger M, Egelberg J (1978) The effects of citric acid on diseased root surfaces. J Periodontal Res 13:155–163

    Article  Google Scholar 

  18. Daly CG (1982) Anti-bacterial effect of citric acid treatment of periodontally diseased root surfaces in vitro. J Clin Periodontol 9:386–392

    Article  CAS  PubMed  Google Scholar 

  19. Polson AM, Hanes PJ (1989) Cell and fiber responses to cementum from periodontitis- affected root surfaces after citric acid treatment. J Clin Periodontol 16:489–497

    Article  CAS  PubMed  Google Scholar 

  20. Hanes PJ, Polson AM, Ladenheim S (1985) Cell and fiber attachment to demineralized dentin from normal root surfaces. J Periodontol 56:752–765

    Article  CAS  PubMed  Google Scholar 

  21. Larjava H, Salonen J, Häkkinen L, Närhi T (1988) Effect of citric acid treatment on the migration of epithelium on root surfaces in vitro. J Periodontol 59:95–99

    Article  CAS  PubMed  Google Scholar 

  22. Blomlof J, Lindskog S (1995) Periodontal tissue vitality after different etching modalities. J Clin Periodontol 22:464–468

    Article  CAS  PubMed  Google Scholar 

  23. Mayfield L, Söderholm G, Norderyd O, Attström R (1998) Root conditioning using EDTA gel as an adjunct to surgical therapy for the treatment of intraosseous periodontal defects. J Clin Periodontol 25:707–714

    Article  CAS  PubMed  Google Scholar 

  24. Scelza MF, Pierro P, Scelza P, Pereira M (2004) Effect of three different time periods of irrigation with EDTA-T, EDTA and citric acid on smear layer removal. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 98:499–503

    Article  PubMed  Google Scholar 

  25. Golub LM, Ramamurthy N, McNamara TF, Gomes B, Wolff M, Casino A, Kapoor A, Zambon J, Ciancio S, Schneir M et al (1984) Tetracyclines inhibit tissue collagenase activity. A new mechanism in the treatment of periodontal disease. J Periodont Res 19:651–555

    Article  CAS  PubMed  Google Scholar 

  26. Lafferty TA, Gher MA, Gray IL (1993) Comparative SEM study on the effect of acid etching with tetracycline HCl or citric acido on instrumented periodontally involved human root surfaces. J Periodontol 64:689–693

    Article  CAS  PubMed  Google Scholar 

  27. Isik AG, Tarem B, Hafez AA, Yalcin FS, Onan U, Cox CF (2000) A comparative scanning electron microscopic study on the characteristics of demineralized dentin root surface using different tetracycline HCl concentrations and application times. J Periodontol 71:219–225

    Article  CAS  PubMed  Google Scholar 

  28. Amaral NG, Rezende ML, Hirata F, Rodrigues MG, Sant'ana AC, Greghi SL, Passanezi E (2011) Comparison among four commonly used demineralizing agents for root conditioning: a scanning electron microscopy. J Appl Oral Sci 19:469–475

    Article  PubMed  PubMed Central  Google Scholar 

  29. Theodoro LH, Zezell DM, Garcia VG, Haypek P, Nagata MJH, Almeida JM, Eduardo CP (2010) Comparative analysis of root surface smear layer removal by different etching modalities or erbium:yttrium-aluminum-garnet laser irradiation. A scanning electron microscopy study. Laser Med Sci 25:485–491

    Article  Google Scholar 

  30. Sgolastra F, Petrucci A, Severino M, Graziani F, Gatto R, Monaco A (2013) Adjunctive photodynamic therapy to non-surgical treatment of chronic periodontitis: a systematic review and meta-analysis. J Clin Periodontol 40:514–526

    Article  CAS  PubMed  Google Scholar 

  31. Xue D, Zhao Y (2017) Clinical effectiveness of adjunctive antimicrobial photodynamic therapy for residual pockets during supportive periodontal therapy: a systematic review and meta-analysis. Photodiagn Photodyn Ther 17:127–133

    Article  CAS  Google Scholar 

  32. Passanezi E, Janson WA, Nahas D, Campos Júnior A (1989) Newly forming bone autografts to treat periodontal infrabony pockets: clinical and histological events. Int J Periodontics Restorative Dent 9:140–153

    CAS  PubMed  Google Scholar 

  33. Sant'ana AC, Ferraz BF, Rezende ML, Greghi SL, Damante CA, Passanezi E (2012) Newly forming bone graft: a novel surgical approach to the treatment of denuded roots. J Appl Oral Sci 20:392–398

    Article  PubMed  PubMed Central  Google Scholar 

  34. Salmeron S, Rezende ML, Consolaro A, Sant'ana AC, Damante CA, Greghi SL, Passanezi E (2013) Laser therapy as an effective method for implant surface decontamination: a histomorphometric study in rats. J Periodontol 84:641–649

    Article  CAS  PubMed  Google Scholar 

  35. Goulart RC, Thedei-Jr G, Souza SL, Tedesco AC, Ciancaglini P (2010) Study of methylene blue and erythrosine dyes employed in photodynamic therapy for inactivation of planktonic and biofilm-cultivated Aggregatibacter actinomycetemcomitans. Photomed Laser Surg 28:85–90

    Article  Google Scholar 

  36. Giannelli M, Formigli L, Lorenzini L, Bani D (2012) Combined photoablative and photodynamic diode laser therapy as an adjunct to non-surgical periodontal treatment: a randomized split-mouth clinical trial. J Clin Periodontol 39:962–970

    Article  PubMed  Google Scholar 

  37. Petelin M, Perkič K, Seme K, Gašpirc B (2015) Effect of repeated adjunctive antimicrobial photodynamic therapy on subgingival periodontal pathogens in the treatment of chronic periodontitis. Lasers Med Sci 30:1647–1656

    Article  PubMed  Google Scholar 

  38. Polson AM, Proye MP (1983) Fibrin linkage: a precursor for new attachment. J Periodontol 54:141–147

    Article  CAS  PubMed  Google Scholar 

  39. Leite FR, Sampaio JE, Zandim DL, Dantas AA, Leite ER, Leite AA (2010) Influence of root-surface conditioning with acid and chelating agents on clot stabilization. Quintessence Int 41:341–349

    PubMed  Google Scholar 

  40. George RP, Kumar S, Ramakrishna T, Emmadi P, Ambalavanan N (2013) Effects of tetracycline-containing gel and a mixture of tetracycline and citric acid-containing gel on non-surgical periodontal therapy. Indian J Dent Res 24:52–59

    Article  PubMed  Google Scholar 

  41. Pessoa L, Galvão V, Damante C, Sant’Ana ACP (2015) Removal of black stains from teeth by photodynamic therapy: clinical and microbiological analysis. BMJ Case Reports. https://doi.org/10.1136/bcr-2015-212276

  42. Decrock E, Hoorelbeke D, Ramadan R, Delvaeye T, De Bock M, Wang N, Krysko DV, Baatout S, Bultynck G, Aerts A, Vinken M, Leybaert L (2017) Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? Biochim Biophys Acta 1864:1099–1120

    Article  CAS  PubMed  Google Scholar 

  43. Zayzafoon M (2006) Calcium/calmodulin signaling controls osteoblast growth and differentiation. J Cell Biochem 97:56–70

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by grant #2010/15667-2 and #2012/06738-9 São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Andreotti Damante.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This paper was approved by Bauru School of Dentistry Ethical Committee in Human Research (Protocols 721.759 and 1.710.789).

Informed consent

Informed consent was obtained from all individual participants that donated teeth for the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, R., de Toledo Barros, R.T., Karam, P.S.B.H. et al. Comparison of the effect of root surface modification with citric acid, EDTA, and aPDT on adhesion and proliferation of human gingival fibroblasts and osteoblasts: an in vitro study. Lasers Med Sci 33, 533–538 (2018). https://doi.org/10.1007/s10103-017-2395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2395-3

Keywords

Navigation