Skip to main content

Advertisement

Log in

Effect of methylene blue-mediated antimicrobial photodynamic therapy on dentin caries microcosms

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Antimicrobial photodynamic therapy (aPDT) has been proposed as an adjuvant treatment of dental caries, although there are no well-defined protocols to its clinical application. This study aimed to evaluate the influence of aPDT on the viability of microorganisms, vitality of biofilms, and lactic acid production of dentin caries microcosms. Biofilms were grown on bovine dentin discs in anaerobic conditions at 37 °C for 5 days, inoculating infected carious dentin in modified McBain medium plus 1% sucrose. The biofilms were treated by the combination of deionized water or 100 mg L−1 methylene blue (MB) with 0, 37.5, or 75 J cm−2 LED at 630 nm. The counts of total microorganisms, total streptococci, mutans streptococci, and total lactobacilli were determined by colony-forming units (CFU). The vitality of microbial cells in intact biofilms was measured by confocal laser scanning microscope (CLSM). The lactic acid production was analyzed by enzymatic spectrophotometry at 340 nm. Statistical analysis was conducted by Kruskal-Wallis and post hoc Dunn’s tests (P < 0.05). MB and 37.5 J cm−2 LED alone did not interfere in the viability of microorganisms, unlike 75 J cm−2 LED alone that decreased the total microorganism and lactobacillus counts. The combination of MB and 75 J cm−2 LED reduced the viability of all microorganisms and the vitality of intact biofilms. The production of lactic acid was statistically lower in all treatment groups in comparison with that of the control (no treatment), except for MB alone. Therefore, the MB-mediated aPDT was effective in controlling the viability, vitality and the acidogenicity of dentin caries microcosms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lula ECO, Almeida LJS, Alves CMC, Monteiro-Neto V, Ribeiro CCC (2011) Partial caries removal in primary teeth: association of clinical parameters with microbiological status. Caries Res 45(3):275–280

    Article  CAS  PubMed  Google Scholar 

  2. Schwendicke F, Meyer-Lueckel H, Dörfer C, Paris S (2013) Attitudes and behaviour regarding deep dentin caries removal: a survey among German dentists. Caries Res 47(6):566–573

    Article  CAS  PubMed  Google Scholar 

  3. Katz CR, de Andrade Mdo R, Lira SS, Ramos Vieira EL, Heimer MV (2013) The concepts of minimally invasive dentistry and its impact on clinical practice: a survey with a group of Brazilian professionals. Int Dent J 63(2):85–90

    Article  PubMed  Google Scholar 

  4. Frencken JE, Imazato S, Toi C, Mulder J, Mickenautsch S, Takahashi Y, Ebisu S (2007) Antibacterial effect of chlorhexidine-containing glass ionomer cement in vivo: a pilot study. Caries Res 41(2):102–107

    Article  CAS  PubMed  Google Scholar 

  5. Mittal S, Soni H, Sharma DK, Mittal K, Pathania V, Sharma S (2015) Comparative evaluation of the antibacterial and physical properties of conventional glass ionomer cement containing chlorhexidine and antibiotics. J Int Soc Prev Community Dent 5(4):268–275

    Article  PubMed  PubMed Central  Google Scholar 

  6. Araújo PV, Correia-Silva Jde F, Gomez RS, Massara Mde L, Cortes ME, Poletto LT (2015) Antimicrobial effect of photodynamic therapy in carious lesions in vivo, using culture and real-time PCR methods. Photodiagn Photody Ther 12(3):401–407

    Article  Google Scholar 

  7. Diniz IM, Horta ID, Azevedo CS, Elmadjian TR, Matos AB, Simionato MR, Marques MM (2015) Antimicrobial photodynamic therapy: a promise candidate for caries lesions treatment. Photodiagn Photodyn Ther 12(3):511–518

    Article  CAS  Google Scholar 

  8. Guglielmi CA, Simionato MR, Ramalho KM, Imparato JC, Pinheiro SL, Luz MA (2011) Clinical use of photodynamic antimicrobial chemotherapy for the treatment of deep carious lesions. J Biomed Optics 16(8):088003

    Article  Google Scholar 

  9. Melo MA (2014) Photodynamic antimicrobial chemotherapy as a strategy for dental caries: building a more conservative therapy in restorative dentistry. Photomed Laser Surg 32(11):589–591

    Article  PubMed  Google Scholar 

  10. Melo MA, Rolim JP, Zanin IC, Silva JJ, Paschoal AR, Ayala AP, Rodrigues LK (2014) A comparative study of the photosensitizer penetration into artificial caries lesions in dentin measured by the confocal Raman microscopy. Photochem Photobiol 90(1):183–188

    Article  CAS  PubMed  Google Scholar 

  11. Cieplik F, Buchalla W, Hellwig E, Al-Ahmad A, Hiller KA, Maisch T, Karygianni L (2017) Antimicrobial photodynamic therapy as an adjunct for treatment of deep carious lesions—a systematic review. Photodiagn Photodyn Ther 18:54–62

    Article  CAS  Google Scholar 

  12. Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42(1):13–28

    Article  CAS  PubMed  Google Scholar 

  13. Konopka K, Goslinski T (2007) Photodynamic therapy in dentistry. J Dent Res 86(8):694–707

    Article  CAS  PubMed  Google Scholar 

  14. Sridharan G, Shankar AA (2012) Toluidine blue: a review of its chemistry and clinical utility. J Oral Maxillofac Pathol 16(2):251–255

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Steiner-Oliveira C, Longo PL, Aranha AC, Ramalho KM, Mayer MP, de Paula Eduardo C (2015) Randomized in vivo evaluation of photodynamic antimicrobial chemotherapy on deciduous carious dentin. J Biomed Optics 20(10):108003

    Article  Google Scholar 

  17. Neves PA, Lima LA, Rodrigues FC, Leitão TJ, Ribeiro CC (2016) Clinical effect of photodynamic therapy on primary carious dentin after partial caries removal. Braz Oral Res 30(1):e47

    Article  Google Scholar 

  18. Baptista A, Kato IT, Prates RA, Suzuki LC, Raele MP, Freitas AZ, Ribeiro MS (2012) Antimicrobial photodynamic therapy as a strategy to arrest enamel demineralization: a short-term study on incipient caries in a rat model. Photochem Photobiol 88(3):584–589

    Article  CAS  PubMed  Google Scholar 

  19. Soria-Lozano P, Gilaberte Y, Paz-Cristobal MP, Pérez-Artiaga L, Lampaya-Pérez V, Aporta J, Pérez-Laguna V, García-Luque I, Revillo MJ, Rezusta A (2015) In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms. BMC Microbiol 15:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rolim JP, de-Melo MA, Guedes SF, Albuquerque-Filho FB, de Souza JR, Nogueira NA, Zanin IC, Rodrigues LK (2012) The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers. J Photochem Photobiol B 106:40–46

    Article  CAS  PubMed  Google Scholar 

  21. Schneider M, Kirfel G, Berthold M, Frentzen M, Krause F, Braun A (2012) The impact of antimicrobial photodynamic therapy in an artificial biofilm model. Lasers Med Sci 27(3):615–620

    Article  PubMed  Google Scholar 

  22. de Freitas-Pontes KM, Gomes CE, de Carvalho BM, Sabóia Rde S, Garcia BA (2014) Photosensitization of in vitro biofilms formed on denture base resin. J Prosthet Dent 112(3):632–637

    Article  PubMed  Google Scholar 

  23. Sissons CH (1997) Artificial dental plaque biofilm model systems. Adv Dent Res 11(1):110–126

    Article  CAS  PubMed  Google Scholar 

  24. McBain AJ, Sissons C, Ledder RG, Sreenivasan PK, De Vizio W, Gilbert P (2005) Development and characterization of a simple perfused oral microcosm. J Appl Microbiol 98(3):624–634

    Article  CAS  PubMed  Google Scholar 

  25. Silva TC, Pereira AF, Exterkate RA, Bagnato VS, Buzalaf MA, Machado MA, Ten Cate JM, Crielaard W, Deng DM (2012) Application of an active attachment model as a high-throughput demineralization biofilm model. J Dent 40(1):41–47

    Article  CAS  PubMed  Google Scholar 

  26. Deng DM, Hoogenkamp MA, Ten Cate JM, Crielaard W (2009) Novel metabolic activity indicator in Streptococcus mutans biofilms. J Microbiol Methods 77(1):67–71

    Article  CAS  PubMed  Google Scholar 

  27. Dige I, Nilsson H, Kilian M, Nyvad B (2007) In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur J Oral Sci 115(6):459–467

    Article  PubMed  Google Scholar 

  28. Zaura-Arite E, van Marle J, ten Cate JM (2001) Confocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J Dent Res 80(5):1436–1440

    Article  CAS  PubMed  Google Scholar 

  29. Sim CP, Dashper SG, Reynolds EC (2016) Oral microbial biofilm models and their application to the testing of anticariogenic agents. J Dent 50:1–11

    Article  CAS  PubMed  Google Scholar 

  30. de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infec Immun 68(9):4839–4849

    Article  Google Scholar 

  31. Antunes LC, Ferreira RB, Buckner MM, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156(Pt 8):2271–2282

    Article  CAS  PubMed  Google Scholar 

  32. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  PubMed  Google Scholar 

  33. Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112(10):1466–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Exterkate RA, Crielaard W, Ten Cate JM (2010) Different response to amine fluoride by Streptococcus mutans and polymicrobial biofilms in a novel high-throughput active attachment model. Caries Res 44(4):372–379

    Article  CAS  PubMed  Google Scholar 

  35. Arthur RA, Waeiss RA, Hara AT, Lippert F, Eckert GJ, Zero DT (2013) A defined-multispecies microbial model for studying enamel caries development. Caries Res 47(4):318–324

    Article  CAS  PubMed  Google Scholar 

  36. Beighton D (2005) The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol 33(4):248–255

    Article  PubMed  Google Scholar 

  37. Takahashi N, Nyvad B (2011) The role of bacteria in the caries process: ecological perspectives. J Dent Res 90(3):294–303

    Article  CAS  PubMed  Google Scholar 

  38. Signori C, van de Sande FH, Maske TT, de Oliveira EF, Cenci MS (2016) Influence of the inoculum source on the cariogenicity of in vitro microcosm biofilms. Caries Res 50(2):97–103

    Article  CAS  PubMed  Google Scholar 

  39. Anderson GG, O'Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105

    CAS  PubMed  Google Scholar 

  40. Whelan HT, Smits RL Jr, Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G, Caviness J (2001) Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19(6):305–314

    Article  CAS  PubMed  Google Scholar 

  41. Robertson JB, Davis CR, Johnson CH (2013) Visible light alters yeast metabolic rhythms by inhibiting respiration. Proc Natl Acad Sci U S A 110(52):21130–21135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Giusti JS, Santos-Pinto L, Pizzolito AC, Helmerson K, Carvalho-Filho E, Kurachi C, Bagnato VS (2008) Antimicrobial photodynamic action on dentin using a light-emitting diode light source. Photomed Laser Surg 26(4):281–287

    Article  PubMed  Google Scholar 

  43. Montoya C, Arango-Santander S, Peláez-Vargas A, Arola D, Ossa EA (2015) Effect of aging on the microstructure, hardness and chemical composition of dentin. Arch Oral Biol 60(12):1811–1820

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Rob Exterkate, Rodrigo Cardoso Oliveira, and Vanderlei Salvador Bagnato for their collaboration in infrastructure and Dr. Marcia Graeff and Veridiana Lopes Rizzato for their support during CSLM analysis. This research was supported by the São Paulo Research Foundation (grant no. 2014/10897-0, no. 2014/22238-1, and no. 2015/08595-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Cruvinel.

Ethics declarations

This research protocol was approved by the Committee for Ethics in Human Research of the Bauru School of Dentistry (CAAE: 34559314.6.0000.5417), following the ethical standards of the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez, D.A.C., Gutierrez, E., Dionísio, E.J. et al. Effect of methylene blue-mediated antimicrobial photodynamic therapy on dentin caries microcosms. Lasers Med Sci 33, 479–487 (2018). https://doi.org/10.1007/s10103-017-2379-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2379-3

Keywords

Navigation