Skip to main content
Log in

Photoinactivation effect of eosin methylene blue and chlorophyllin sodium-copper against Staphylococcus aureus and Escherichia coli

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The use of eosin methylene blue according to Giemsa as photosensitizer is presented for the first time in this paper. The present study evaluated the potential application of chlorophyllin sodium copper salt (CuChlNa) and eosin methylene blue according to Giemsa (EMB) as antimicrobial photosensitizers (aPS) for photodynamic inactivation (PDI) of Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative) bacteria. The experiments were performed using S. aureus stain ATCC 25923 and E. coli ATCC 25922 in which five aPS concentrations (0.0, 1.0, 2.5, 5.0, 10.0, and 20.0 μM for S. aureus and 0.0, 5.0, 10.0, 20.0, 40.0, and 50.0 μM for E. coli) were prepared and added in 2 mL of a saline solution containing the bacterial inoculum. After aPS incubation, the samples were divided into two groups, one kept in the dark and another submitted to the illumination. Then, the bacterial inactivation was determined 18 h after the incubation at 37 °C by counting the colony-forming units (CFU). The results revealed that both EMB and CuChlNa can be used as aPS for the photoinactivation of S. aureus, while only EMB was able to photoinactivate E. coli. Nevertheless, a more complex experimental setup was needed for photoinactivation of E. coli. The data showed that EMB and CuChlNa presented similar photoinactivation effects on S. aureus, in which bacterial growth was completely inhibited at photosensitizer (PS) concentrations over 5 μM, when samples were previously incubated for 30 min and irradiated by a light dose of 30 J cm−2 as a result of an illumination of 1 h at 8.3 mW cm−2 by using a red light at 625 nm with a 1 cm beam diameter and output power of 6.5 mW. In the case of E. coli, bacterial growth was completely inhibited only when combining a PS incubation period of 120 min with concentrations over 20 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Runcie H (2015) Infection in a pre-antibiotic era. J Anc Dis Prev Rem 3:125

    Article  Google Scholar 

  2. Manzetti S, Ghisi R (2014) The environmental release and fate of antibiotics. Mar Pollut Bull 79:7–15

    Article  CAS  PubMed  Google Scholar 

  3. Arias CA, Murray BE (2009) Antibiotic-resistant bugs in the 21st century—a clinical super-challenge. N Engl J Med 360:439–443

    Article  CAS  PubMed  Google Scholar 

  4. Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36:697–705

    Article  PubMed  Google Scholar 

  5. Sperandio FF, Huang Y, Hamblin MR (2013) Antimicrobial photodynamic therapy to kill gram-negative bacteria. Recent Pat Antiinfect Drug Discov 8:108–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Salton MRJ, Kim KS (1996) Structure. in: Baron S (ed) medical microbiology, 4rd edn. Galveston, University of Texas Medical Branch at Galveston. pp 1–20. http://www.ncbi.nlm.nih.gov/books/NBK8477/. Accessed 21 august 2016

  7. Foster T (1996) Staphylococcus. in: Baron S (ed) medical microbiology, 4rd edn. Galveston, University of Texas Medical Branch at Galveston. pp 1–22. http://www.ncbi.nlm.nih.gov/books/NBK8448/. Accessed 21 august 2016

  8. Guentzel MN (1996) Escherichia, Klebsiella, Enterobacter, Serratia, Citrobacter, and Proteus. In: Baron S. (ed) medical microbiology, 4rd edn. Galveston, University of Texas Medical Branch at Galveston, pp 1–20. http://www.ncbi.nlm.nih.gov/books/NBK8035/. Accessed 21 august 2016

  9. Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, QAMAR FN, Mir F, Kariuki S, Bhutta ZQA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O (2013) Antibiotic resistance—the need for global solutions. Lancet Infect Dis 13:1057–1098

    Article  PubMed  Google Scholar 

  10. Centers for Disease Control and Prevention (2013) Antibiotic resistance threats in the United States. http: //www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed 21 august 2016

  11. Liu Y, Wang Y, Walsh TR, Yi L, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu L, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu J, Shen J (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168

    Article  PubMed  Google Scholar 

  12. Foote CS (1991) Definition of type I and type II photosensitized oxidation. Photochem Photobiol 54:659

    Article  CAS  PubMed  Google Scholar 

  13. Henderson BW, Doughert TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55:145–157

    Article  CAS  PubMed  Google Scholar 

  14. Vera DM, Haynes MH, Ball AR, Dai T, Astrakas C, Kelso MJ, Hamblin MR, Tegos GP (2012) Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes. Photochem Photobiol 88:499–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamblin MR (2016) Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 33:67–73

    Article  CAS  PubMed  Google Scholar 

  16. Bumah VV, Whelan HT, Masson-Meyers DN, Quirk B, Buchmann E, Enwemeka CS (2015) The bactericidal effect of 470-nm light and hyperbaric oxygen on methicillin-resistant Staphylococcus aureus (MRSA). Lasers Med Sci 30:1153–1159

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dai T (2017) The antimicrobial effect of blue light: what are behind? Virulence DOI. doi:10.1080/21505594.2016.1276691

    Google Scholar 

  18. Enwemeka CS (2013) Antimicrobial blue light: an emerging alternative to antibiotics. Photomed Laser Surg 31:509–511

    Article  PubMed  Google Scholar 

  19. Barcia JJ (2007) The Giemsa stain: its history and applications. Int J Surg Pathol 15:292–296

    Article  PubMed  Google Scholar 

  20. Brammer SP, Toniazzo C, Poersch LB (2015) Corantes comumente empregados na citogenética vegetal. Arq Inst Biol 82:1–8

    Article  Google Scholar 

  21. Fleischer B (2004) 100 years ago: Giemsa’s solution for staining of plasmodia. Tropical Med Int Health 9:755–756

    Article  Google Scholar 

  22. Gerola AP, Santana A, França PB, Tsubone TM, Oliveira HPM, Caetano W, Kimura E, Hioka N (2011) Effects of metal and the phytyl chain on chlorophyll derivatives: physicochemical evaluation for photodynamic inactivation of microorganisms. Photochem Photobiol 87:884–894

    Article  CAS  PubMed  Google Scholar 

  23. Park JH, Moon YH, Bang IS, Kim YC, Kim SA, Ahn SG, Yoon JH (2010) Antimicrobial effect of photodynamic therapy using a highly pure chlorin e6. Lasers Med Sci 25:705–710

    Article  PubMed  Google Scholar 

  24. Sahu K, Sharma M, Bansal H, Dube A, Gupt PK (2013) Topical photodynamic treatment with poly-L-lysine–chlorin p6 conjugate improves wound healing by reducing hyperinflammatory response in Pseudomonas aeruginosa-infected wounds of mice. Lasers Med Sci 28:465–471

    Article  PubMed  Google Scholar 

  25. Luksiene Z, Buchovec I, Paskeviciute E (2010) Inactivation of Bacillus cereus by Na-chlorophyllin-based photosensitization on the surface of packaging. J Appl Microbiol 109:1540–1548

    CAS  PubMed  Google Scholar 

  26. Freshney IR (2005) Culture of animal cells, a manual of basic technique, 5th edn. Wiley-Liss, New York

    Book  Google Scholar 

  27. Skehan P, Storeng R, Scudiero D, Monks A, Mcmahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  PubMed  Google Scholar 

  28. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langlet J, Cronise P, Vaigro-Wolff A, Ray GM, Campbell H, Mayo J, Boyd M (1991) Feasibility of a high-flux anticancer drug screen using diverse panel of cultured human tumor cell lines. Natl Cancer Inst 83:757–766

    Article  CAS  Google Scholar 

  29. Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823

    Article  CAS  PubMed  Google Scholar 

  30. Durantini EN (2006) Photodynamic inactivation of bacteria. Curr Bioact Compd 2:127–142

    Article  CAS  Google Scholar 

  31. Nitzan Y, Gutterman M, Malik Z, Ehrenberg B (1992) Inactivation of gram-negative bacteria by photosensitized porphyrins. Photochem Photobiol 55:89–96

    Article  CAS  PubMed  Google Scholar 

  32. Tang HM, Hamblin MR, Yow CMN (2007) A comparative in vitro photoinactivation study of clinical isolates of multidrug-resistant pathogens. J Infect Chemother 13:87–91

    Article  PubMed  PubMed Central  Google Scholar 

  33. Huang L, Dai T, Hamblin MR (2010) Antimicrobial photodynamic inactivation and photodynamic therapy for infections. Methods Mol Biol 635:155–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. López-Carballo G, Hernández-Muñoz P, Gavara R, Ocio MJ (2008) Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products. Int J Food Microbiol 126:65–70

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical support provided by Mr. Esmael Dias Prado and Marcelo Alves Teixeira.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anderson R. L. Caires or Valter A. Nascimento.

Ethics declarations

Funding

This work was supported by the National Institute of Science and Technology of Optics and Photonics (Grant 440585/2016-3).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures were performed according to the ethical standards of the Federal University of Mato Grosso do Sul. An ethical approval was not needed.

Informed consent

Informed consent was not needed.

Electronic supplementary material

ESM. 1

(DOCX 2682 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caires, C.S.A., Leal, C.R.B., Ramos, C.A.N. et al. Photoinactivation effect of eosin methylene blue and chlorophyllin sodium-copper against Staphylococcus aureus and Escherichia coli . Lasers Med Sci 32, 1081–1088 (2017). https://doi.org/10.1007/s10103-017-2210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2210-1

Keywords

Navigation