Skip to main content

Advertisement

Log in

Photobiomodulation therapy associated with treadmill training in the oxidative stress in a collagen-induced arthritis model

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by chronic and systemic inflammation, which leads to the destruction of the cartilage and bone and affects tissues in multiple joints. Oxidative stress has been implicated with regards to involvement in various disease conditions, such as diabetes mellitus and neurodegenerative, respiratory, cardiovascular, and RA diseases. In vivo experimental studies using photobiomodulation therapy (PBMT) have shown positive effects in reducing lipid peroxidation and in increasing antioxidant activity. The regular practice of physical exercise has also been reported to be a beneficial treatment capable of reducing oxidative damage. Thus, the aim of this study was to analyze the effects of photobiomodulation therapy at 2- and 4-J doses associated with physical exercise on oxidative stress in an experimental model of RA in protein expression involving superoxide dismutase (SOD), glutathione peroxidase (GPX), and/or catalase (CAT) on thiobarbituric acid reactive substances (TBARS). In this study, 24 male Wistar rats divided into four groups were submitted to an RA model (i.e., collagen-induced arthritis, CIA), with the first immunization performed at the base of the tail on days 0 and 7 were included. After 28 days, a third intraarticular dose was administered in both knees of the animals. After the last induction, PBMT was started immediately, transcutaneously at two points (i.e., the medial and lateral), with a total of 15 applications. Treadmill exercise was also started the day after the last induction, and lasted for 5 weeks. With respect to results, we obtained the decreases in the lipid peroxidation and the increases of the antioxidant activities of SOD, GPX and CAT, with physical exercise associated to PBMT in doses of 2 and 4 J. In conclusion, physical exercise associated with PBMT decreases lipid peroxidation and increases antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hadi V, Kheirouri S, Alizadeh M, Khabbazi A, Hosseini H (2016) Effects of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress status in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled clinical trial. Avicenna J Phytomed 6:34–43

    PubMed  PubMed Central  Google Scholar 

  2. Lu QY, Han QH, Li X, Li ZC, Pan YT, Liu L, Fu QG (2014) Analysis of differentially expressed genes between rheumatoid arthritis and osteoarthritis based on the gene co-expression network. Mol Med Rep 10:119–124. doi:10.3892/mmr.2014.2166

    CAS  PubMed  Google Scholar 

  3. Quiñonez-Flores CM, González-Chávez SA, Del Río ND, Pacheco-Tena C (2016) Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: a systematic review. Biomed Res Int 2016:6097417. doi:10.1155/2016/6097417

    Article  PubMed  PubMed Central  Google Scholar 

  4. Khojah HM, Ahmed S, Abdel-Rahman MS, Hamza AB (2016) Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants. Free Radic Biol Med S0891-5849:30308–30302. doi:10.1016/j.freeradbiomed.2016.06.020

    Google Scholar 

  5. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30:11–26. doi:10.1007/s12291-014-0446-0

    Article  CAS  PubMed  Google Scholar 

  6. Vasanthi P, Nalini G, Rajasekhar G (2009) Status of oxidative stress in rheumatoid arthritis. Int J Rheum Dis 12:29–33. doi:10.1111/j.1756-185X.2009.01375.x

    Article  PubMed  Google Scholar 

  7. Tuna Z, Duger T, Atalay-Guzel N, Aral A, Basturk B, Haznedaroglu S, Goker B (2015) Aerobic exercise improves oxidant-antioxidant balance in patients with rheumatoid arthritis. J Phys Ther Sci 27:1239–1242. doi:10.1589/jpts.27.1239

    Article  PubMed  PubMed Central  Google Scholar 

  8. He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L (2016) Redox mechanism of reactive oxygen species in exercise. Front Physiol 7:486

    PubMed  PubMed Central  Google Scholar 

  9. Ji LL (1999) Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med 222:283–292

    Article  CAS  PubMed  Google Scholar 

  10. Cruzat VF, Rogero MM, Borges MC, Tirapegui J (2007) Aspectos atuais sobre estresse oxidativo, exercícios físicos e suplementação. Rev Bras Med Esporte 13:336–342. doi:10.1590/S1517-86922007000500011

    Article  Google Scholar 

  11. Guaraldo SA, Serra AJ, Amadio EM, Antônio EL, Silva F, Portes LA, Tucci PJ, Leal-Junior EC, de Carvalho PT (2016) The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise. Lasers Med Sci 31:833–840. doi:10.1007/s10103-016-1882-2

    Article  PubMed  Google Scholar 

  12. Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho PT, Dal Corso S, Bjordal JM (2015) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci 30:925–939. doi:10.1007/s10103-013-1465-4

    Article  PubMed  Google Scholar 

  13. Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, Silva DP, Basso M, Filho PL, de Valls Corsetti F, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40:524–532. doi:10.2519/jospt.2010.3294

    Article  PubMed  Google Scholar 

  14. de Almeida P, Lopes-Martins RA, De Marchi T, Tomazoni SS, Albertini R, Corrêa JC, Rossi RP, Machado GP, da Silva DP, Bjordal JM, Leal Junior EC (2012) Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers Med Sci 27:453–458. doi:10.1007/s10103-011-0957-3

    Article  PubMed  Google Scholar 

  15. Sussai DA, Carvalho Pde T, Dourado DM, Belchior AC, dos Reis FA, Pereira DM (2010) Low-level laser therapy attenuates creatine kinase levels and apoptosis during forced swimming in rats. Lasers Med Sci 25:115–120. doi:10.1007/s10103-009-0697-9

    Article  PubMed  Google Scholar 

  16. Santos LA, Marcos RL, Tomazoni SS, Vanin AA, Antonialli FC, Grandinetti Vdos S, Albuquerque-Pontes GM, de Paiva PR, Lopes-Martins RÁ, de Carvalho PT, Bjordal JM, Leal-Junior EC (2014) Effects of pre-irradiation of low-level laser therapy with different doses and wavelengths in skeletal muscle performance, fatigue, and skeletal muscle damage induced by tetanic contractions in rats. Lasers Med Sci 29:1617–1626. doi:10.1007/s10103-014-1560-1

    Article  PubMed  Google Scholar 

  17. Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, Marroni NP, González-Gallego J (2005) Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg Med 37(4):293–300

    Article  PubMed  Google Scholar 

  18. Firat ET, Dağ A, Günay A, Kaya B, Karadede Mİ, Ersöz Kanay B, Ketani A, Evliyaoğlu O, Uysal E (2014) The effect of low-level laser therapy on the healing of hard palate mucosa and the oxidative stress status of rats. J Oral Pathol Med 43:103–110. doi:10.1111/jop.12106

    Article  PubMed  Google Scholar 

  19. Servetto N, Cremonezzi D, Simes JC, Moya M, Soriano F, Palma JA, Campana VR (2010) Evaluation of inflammatory biomarkers associated with oxidative stress and histological assessment of low-level laser therapy in experimental myopathy. Lasers Surg Med 42:577–583. doi:10.1002/lsm.20910

    Article  PubMed  Google Scholar 

  20. Tomazoni SS, Leal-Junior EC, Frigo L, Pallotta RC, Teixeira S, de Almeida P, Bjordal JM, Lopes-Martins RÁ (2016) Isolated and combined effects of photobiomodulationtherapy, topical nonsteroidal anti-inflammatory drugs, and physical activity in the treatment of osteoarthritis induced by papain. J Biomed Opt 21:108001. doi:10.1117/1.JBO.21.10.108001

    Article  PubMed  Google Scholar 

  21. Tomazoni SS, Leal-Junior EC, Pallotta RC, Teixeira S, de Almeida P, Lopes-Martins RÁ (2017) Effects of photobiomodulation therapy, pharmacological therapy, and physical exercise as single and/or combined treatment on the inflammatory response induced by experimental osteoarthritis. Lasers Med Sci 32:101–108. doi:10.1007/s10103-016-2091-8

    Article  PubMed  Google Scholar 

  22. Silva AA, Leal-Junior EC, D’Avila Kde A, Serra AJ, Albertini R, França CM, Nishida JA, de Carvalho PT (2015) Pre-exercise low-level laser therapy improves performance and levels of oxidative stress markers in mdx mice subjected to muscle fatigue by high-intensity exercise. Lasers Med Sci 30:1719–1727. doi:10.1007/s10103-015-1777-7

    Article  PubMed  Google Scholar 

  23. Myers LK, Rosloniec EF, Cremer MA, Kang AH (1997) Collagen-induced arthritis, an animal control of autoimmunity. Life Sci 61:1861–1878. doi:10.1016/S0024-3205(97)00480-3

    Article  CAS  PubMed  Google Scholar 

  24. dos Santos SA, Alves AC, Leal-Junior EC, Albertini R, Vieira RP, Ligeiro AP, Junior JA, de Carvalho PT (2014) Comparative analysis of two low-level laser doses on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Lasers Med Sci 29:1051–1058. doi:10.1007/s10103-013-1467-2

    Article  PubMed  Google Scholar 

  25. Tang T, Muneta T, Young-Jin J, Nimura A, Miyazaki K, Masuda H, Mochizuki T, Sekiya I (2008) Serum keratan sulfate transiently increases in the early stage of osteoarthritis during strenuous running of rats: protective effect of intraarticular hyaluronan injection. Arthritis Res Ther 10:R13. doi:10.1186/ar2363

    Article  PubMed  PubMed Central  Google Scholar 

  26. Alves AC, Vieira R, Leal-Junior E, dos Santos S, Ligeiro AP, Albertini R, Junior J, de Carvalho P (2013) Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Arthritis Res Ther. doi:10.1186/ar4296

    PubMed  PubMed Central  Google Scholar 

  27. Wang P, Liu C, Yang X, Zhou Y, Wei X, Ji Q, Yang L, He C (2014) Effects of low-level laser therapy on joint pain, synovitis, anabolic, and catabolic factors in a progressive osteoarthritis rabbit model. Lasers Med Sci 29:1875–1885. doi:10.1007/s10103-014-1600-x

    Article  PubMed  Google Scholar 

  28. Guo H, Luo Q, Zhang J, Lin H, Xia L, He C (2011) Comparing different physical factors on serum TNF-α levels, chondrocyte apoptosis, caspase-3 and caspase-8 expression in osteoarthritis of the knee in rabbits. Joint Bone Spine 78:604–610. doi:10.1016/j.jbspin.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  29. Alves AC, Albertini R, dos Santos SA, Leal-Junior EC, Santana E, Serra AJ, Silva JA Jr, de Carvalho PT (2014) Effect of low-level laser therapy on metalloproteinase MMP-2 and MMP-9 production and percentage of collagen types I and III in a papain cartilage injury model. Lasers Med Sci 29:911–919. doi:10.1007/s10103-013-1427-x

    Article  PubMed  Google Scholar 

  30. Hsieh YL, Cheng YJ, Huang FC, Yang CC (2014) The fluence effects of low-level laser therapy on inflammation, fibroblast-like synoviocytes, and synovial apoptosis in rats with adjuvant-induced arthritis. Photomed Laser Surg 32:669–677. doi:10.1089/pho.2014.3821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Imaoka A, Zhang L, Kuboyama N, Abiko Y (2014) Reduction of IL-20 expression in rheumatoid arthritis by linear polarized infrared light irradiation. Laser Ther 23:109–114. doi:10.5978/islsm.14-OR-08

    Article  PubMed  PubMed Central  Google Scholar 

  32. Alves AC, de Carvalho PT, Parente M, Xavier M, Frigo L, Aimbire F, Leal Junior EC, Albertini R (2013) Low-level laser therapy in different stages of rheumatoid arthritis: a histological study. Lasers Med Sci 28:529–536. doi:10.1007/s10103-012-1102-7

    Article  PubMed  Google Scholar 

  33. Ribeiro BG, Alves AN, dos Santos LA, Cantero TM, Fernandes KPS, Dias Dda S, Bernardes N, De Angelis K, Mesquita-Ferrari RA (2016) Red and infrared low-level laser therapy prior to injury with or without administration after injury modulate oxidative stress during the muscle repair process. PLoS One 11:e0153618. doi:10.1371/journal.pone.0153618

    Article  PubMed  PubMed Central  Google Scholar 

  34. Biasibetti M, Rojas DB, Hentschke VS, Moura DJ, Karsten M, Wannmacher CM, Saffi J, Dal Lago P (2014) The influence of low-level laser therapy on parameters of oxidative stress and DNA damage on muscle and plasma in rats with heart failure. Lasers Med Sci 29(6):1895–1906. doi:10.1007/s10103-014-1597-1

    Article  PubMed  Google Scholar 

  35. De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27:231–236. doi:10.1007/s10103-011-0955-5

    Article  PubMed  Google Scholar 

  36. Nonato LF, Rocha-Vieira E, Tossige-Gomes R, Soares AA, Soares BA, Freitas DA, Oliveira MX, Mendonca VA, Lacerda AC, Massensini AR, Leite HR (2016) Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain. Braz J Med Biol Res 49:e5310. doi:10.1590/1414-431X20165310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamazaki M, Kusano K, Ishibashi T, Kiuchi M, Koyama K (2015) Intravenous infusion of H2-saline suppresses oxidative stress and elevates antioxidant potential in thoroughbred horses after racing exercise. Sci Rep 5:15514 DOi: 10.1038/srep15514.

  38. Mazzola PN, Terra M, Rosa AP, Mescka CP, Moraes TB, Piccoli B, Jacques CE, Dalazen G, Cortes MX, Coelho J, Dutra-Filho CS (2011) Regular exercise prevents oxidative stress in the brain of hyperphenylalaninemic rats. Metab Brain Dis 26:291–297

    Article  CAS  PubMed  Google Scholar 

  39. Pinho RA, Silveira PCL, Piazza M, Tuon T, Slva GA, Dal-Pizzol F, Moreira JCF (2006) Exercício físico regular diminui o estresse oxidativo pulmonar em ratos após exposição aguda ao carvão mineral. Rev Bras Med Esporte 12(2):81–84. doi:10.1590/S1517-86922006000200005

    Article  Google Scholar 

  40. Pinho WL, Rebelo da Silva AP (2013) Efeitos do exercício físico sobre a formação de espécies reativas de oxigênio e os compostos antioxidantes da dieta. Revista Brasileira de Nutrição Esportiva, São Paulo 7:77–87

    Google Scholar 

  41. Silveira PCL, Silva LA, Tuon T, Freitas TP, Streck EL, Pinho RA (2009) Effects of low-level laser therapy on epidermal oxidative response induced by wound healing. Rev Bras Fisioter 13:281–287

    Article  Google Scholar 

  42. Carvalho JL, de Brito AA, de Oliveira A, de Castro Faria Neto HC, Pereira TM, de Carvalho RA, Anatriello E, Aimbire F (2016) The chemokines secretion and the oxidative stress are targets of low-level laser therapy in allergic lung inflammation. J Biophotonics 9:1208–1221

    Article  PubMed  Google Scholar 

  43. Assis L, Moretti AI, Abrahão TB, Cury V, Souza HP, Hamblin MR, Parizotto NA (2012) Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg Med 44:726–735

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR (2013) Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics 6:829–838

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant number 2015/13677-4, from the São Paulo Research Foundation (FAPESP) and the National Council for Scientific and Technological (grant numbers 309065/2015-1).

Radical species with oxidative activity, which include reactive nitrogen species (RNS) and reactive oxygen species (ROS), represent the mediators and effectors of cartilage damage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo de Tarso Camillo de Carvalho.

Ethics declarations

Conflict of interest

Professor Ernesto Cesar Pinto Leal-Junior receives research support from Multi Radiance Medical (Solon, OH, USA), a laser device manufacturer. Multi Radiance Medical had no role in the planning of this study, and the laser device used herein was not theirs. They had no influence on the study’s design, data collection and analysis, and the making of the decision to publish or the preparation of the manuscript. The remaining authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, S.A., dos Santos Vieira, M.A., Simões, M.B. et al. Photobiomodulation therapy associated with treadmill training in the oxidative stress in a collagen-induced arthritis model. Lasers Med Sci 32, 1071–1079 (2017). https://doi.org/10.1007/s10103-017-2209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2209-7

Keywords

Navigation