Skip to main content

Advertisement

Log in

The effect of different cleaning methods on the surface and temperature of failed titanium implants: an in vitro study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aims of this in vitro study are to compare the efficacy of different cleaning methods in removing debris of failed implants and to detect thermal changes of the implants treated by various scaling instruments. Twenty-seven failed implants and two unused implants as control were included to this study—group 1: plastic curette (P), group 2: titanium curette (T), group 3: carbon curette (C), group 4: titanium brush (TB), group 5: Er:YAG laser (laser 1 (L1) 100 mJ/pulse at 10 Hz), group 6: Er:YAG laser (laser 2 (L2) 150 mJ/pulse at 10 Hz), group 7: Er:YAG laser (laser 3 (L3) 200 mJ/pulse at 10 Hz), group 8: ultrasonic scaler appropriate for titanium (US), group 9: air abrasive method (AA) + citric acid, and group 10: implantoplasty (I). The changes on the treated/untreated titanium surfaces and remnant debris were observed by scanning electron microscopy (SEM). Temperature of the implants before and after treatment was detected using a thermocouple. The use of air abrasive and citric acid combination and Er:YAG laser groups was found as the best methods for the decontamination of titanium surfaces of failed implant. When the hand instruments were compared, titanium curette was found better than both the plastic and the carbon curettes which leave plastics and carbon remnants on the titanium surface. The temperature was higher after hand instrumentation when compared to other experimental groups (p < 0.05). Within the limitations of the present in vitro model, it can be concluded that the best method for decontamination of the implant surface is the use of air abrasives and Er:YAG laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zitzmann NU, Berglundh T (2008) Definition and prevalence of peri-implant diseases. J Clin Periodontol 35(8 Suppl):286–291

    Article  PubMed  Google Scholar 

  2. Natto ZS, Aladmawy M, Levi PA Jr, Wang HL (2015) Comparison of the efficacy of different types of lasers for the treatment of peri-implantitis: a systematic review. Int J Oral Maxillofac Implants 30(2):338–345

    Article  PubMed  Google Scholar 

  3. Padial-Molina M, Suarez F, Rios HF, Galindo-Moreno P, Wang HL (2014) Guidelines for the diagnosis and treatment of peri-implant diseases. Int J Periodontics Restorative Dent 34(6):e102–111

    Article  PubMed  Google Scholar 

  4. Lindhe J, Meyle J, Group D of European Workshop on Periodontology (2008) Peri-implant diseases: consensus report of the Sixth European Workshop on Periodontology. J Clin Periodontol 35(8 Suppl):282–285

    Article  PubMed  Google Scholar 

  5. Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, Becker J (2003) Effects of an Er:YAG laser and the Vector ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Clin Oral Implants Res 14(6):784–792

    Article  PubMed  Google Scholar 

  6. Mombelli A, Lang NP (1994) Microbial aspects of implant dentistry. Periodontol 2000 4:74–80

    Article  CAS  PubMed  Google Scholar 

  7. Mombelli A, Müller N, Cionca N (2012) The epidemiology of peri-implantitis. Clin Oral Implants Res 23(Suppl 6):67–76

    Article  PubMed  Google Scholar 

  8. Renvert S, Polyzois I, Claffey N (2012) Surgical therapy for the control of peri-implantitis. Clin Oral Implants Res 23(Suppl 6):84–94

    Article  PubMed  Google Scholar 

  9. Romanos GE, Weitz D (2012) Therapy of peri-implant diseases. Where is the evidence? J Evid Based Dent Pract 12(3 Suppl):204–208

    Article  PubMed  Google Scholar 

  10. Augthun M, Tinschert J, Huber A (1998) In vitro studies on the effect of cleaning methods on different implant surfaces. J Periodontol 69(8):857–864

    Article  CAS  PubMed  Google Scholar 

  11. Dennison DK, Huerzeler MB, Quinones C, Caffesse RG (1994) Contaminated implant surfaces: an in vitro comparison of implant surface coating and treatment modalities for decontamination. J Periodontol 65(10):942–948

    Article  CAS  PubMed  Google Scholar 

  12. Mailoa J, Lin GH, Chan HL, Maceachern M, Wang HL (2014) Clinical outcomes of using lasers for peri-implantitis surface detoxification: a systematic review and meta-analysis. J Periodontol 85(9):1194–1202

    Article  PubMed  Google Scholar 

  13. Sahrmann P, Ronay V, Hofer D, Attin T, Jung RE, Schmidlin PR (2015) In vitro cleaning potential of three different implant debridement methods. Clin Oral Implants Res 26(3):314–319

    Article  PubMed  Google Scholar 

  14. Mengel R, Buns CE, Mengel C, Flores-de-Jacoby L (1998) An in vitro study of the treatment of implant surfaces with different instruments. Int J Oral Maxillofac Implants 13(1):91–96

    CAS  PubMed  Google Scholar 

  15. Meyle J (2012) Mechanical, chemical and laser treatments of the implant surface in the presence of marginal bone loss around implants. Eur J Oral Implantol 5(Suppl):71–81

    Google Scholar 

  16. Mouhyi J, Sennerby L, Nammour S, Guillaume P, Van Reck J (1999) Temperature increases during surface decontamination of titanium implants using CO2 laser. Clin Oral Implants Res 10(1):54–61

    Article  CAS  PubMed  Google Scholar 

  17. Kreisler M, Al Haj H, Götz H, Duschner H, d’Hoedt B (2002) Effect of simulated CO2 and GaAlAs laser surface decontamination on temperature changes in Ti-plasma sprayed dental implants. Lasers Surg Med 30(3):233–239

    Article  PubMed  Google Scholar 

  18. Oyster DK, Parker WB, Gher ME (1995) CO2 lasers and temperature changes of titanium implants. J Periodontol 66(12):1017–1024

    Article  CAS  PubMed  Google Scholar 

  19. Kreisler M, Al Haj H, D’Hoedt B (2003) Temperature changes induced by 809-nm GaAlAs laser at the implant-bone interface during simulated surface decontamination. Clin Oral Implants Res 14(1):91–96

    Article  PubMed  Google Scholar 

  20. Kamel MS, Khosa A, Tawse-Smith A, Leichter J (2014) The use of laser therapy for dental implant surface decontamination: a narrative review of in vitro studies. Lasers Med Sci 29(6):1977–85

    Article  PubMed  Google Scholar 

  21. Kreisler M, Al Haj H, d’Hoedt B (2002) Temperature changes at the implant-bone interface during simulated surface decontamination with an Er:YAG laser. Int J Prosthodont 15(6):582–587

    PubMed  Google Scholar 

  22. Taniguchi Y, Aoki A, Mizutani K, Takeuchi Y, Ichinose S, Takasaki AA, Schwarz F, Izumi Y (2013) Optimal Er:YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants. Lasers Med Sci 28(4):1057–1068

    Article  PubMed  Google Scholar 

  23. Li S, Chien S, Brånemark PI (1999) Heat shock-induced necrosis and apoptosis in osteoblasts. J Orthop Res 17(6):891–899

    Article  CAS  PubMed  Google Scholar 

  24. Mellado-Valero A, Buitrago-Vera P, Solá-Ruiz MF, Ferrer-García JC (2013) Decontamination of dental implant surface in peri-implantitis treatment: a literature review. Med Oral Patol Oral Cir Bucal 18(6):e869–876

    Article  PubMed  PubMed Central  Google Scholar 

  25. John G, Becker J, Schwarz F (2014) Rotating titanium brush for plaque removal from rough titanium surfaces—an in vitro study. Clin Oral Implants Res 25(7):838–42

    Article  PubMed  Google Scholar 

  26. Schmidt KE, Auschill TM, Heumann C, Frankenberger R, Eick S, Sculean A, Arweiler NB (2016) Influence of different instrumentation modalities on the surface characteristics and biofilm formation on dental implant neck, in vitro. Clin Oral Implants Res. doi:10.1111/clr.12823

    Google Scholar 

  27. Louropoulou A, Slot DE, Van der Weijden F (2014) The effects of mechanical instruments on contaminated titanium dental implant surfaces: a systematic review. Clin Oral Implants Res 25(10):1149–60

    Article  PubMed  Google Scholar 

  28. Subramani K, Wismeijer D (2012) Decontamination of titanium implant surface and re-osseointegration to treat peri-implantitis: a literature review. Int J Oral Maxillofac Implants 27(5):1043–54

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mutlu Dental Company, Turkey, for providing failed implants. SEM and EDX analysis of this study was supported by Selcuk University Research Foundation (SSH), Konya, Turkey. This study was presented as a poster in EAO congress in Rome (2014), Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sema S. Hakki.

Ethics declarations

The study protocol was approved by the Ethics Commission of Selcuk University for human materials. Failed implants used in this study were provided after informed consent of the patients.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakki, S.S., Tatar, G., Dundar, N. et al. The effect of different cleaning methods on the surface and temperature of failed titanium implants: an in vitro study. Lasers Med Sci 32, 563–571 (2017). https://doi.org/10.1007/s10103-017-2149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2149-2

Keywords

Navigation