Skip to main content

Advertisement

Log in

Low-level laser therapy and light-emitting diode effects in the secretion of neuropeptides SP and CGRP in rat skin

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The phototherapy effects in the skin are related to biomodulation, usually to accelerate wound healing. However, there is no direct proof of the interrelation between the effects of low-level laser therapy (LLLT) and light-emitting diode (LED) in neuropeptide secretion, these substances being prematurely involved in the neurogenic inflammation phase of wound healing. This study therefore focused on investigating LLLT and LED in Calcitonin gene-related peptide (CGRP) and substance P (SP) secretion in healthy rat skin. Forty rats were randomly distributed into five groups with eight rats each: Control Group, Blue LED Group (470 nm, 350 mW power), Red LED Group (660 nm, 350 mW power), Red Laser Group (660 nm, 100 mW power), and Infrared Laser Group (808 nm, 100 mW power) (DMC® Equipamentos Ltda., São Carlos, São Paulo, Brazil). The skin of the animals in the experimental groups was irradiated using the punctual contact technique, with a total energy of 40 J, single dose, standardized at one point in the dorsal region. After 14 min of irradiation, the skin samples were collected for CGRP and SP quantification using western blot analysis. SP was released in Infrared Laser Group (p = 0.01); there was no difference in the CGRP secretion among groups. Infrared (808 nm) LLLT enhances neuropeptide SP secretion in healthy rat skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schmelz M, Petersen LJ (2001) Neurogenic inflammation in human and rodent skin. News Physiol Sci 16:33–37

    CAS  PubMed  Google Scholar 

  2. Geppetti P, Nassini R, Materazzi S, Benemei S (2008) The concept of neurogenic inflammation. BJU Int 101(Suppl 3):2–6. doi:10.1111/j.1464-410X.2008.07493.x

    Article  CAS  PubMed  Google Scholar 

  3. Slominski AT, Zmijewski MA, Skobowiat C, Zbytek B, Slominski RM, Steketee JD (2012) Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv Anat Embryol Cell Biol 212:1–115, v, vii

    Article  Google Scholar 

  4. Lotti T, Hautmann G, Panconesi E (1995) Neuropeptides in skin. J Am Acad Dermatol 33(3):482–496

    Article  CAS  PubMed  Google Scholar 

  5. Aubdool AA, Brain SD (2011) Neurovascular aspects of skin neurogenic inflammation. J Investig Dermatol Symp Proc 15(1):33–39. doi:10.1038/jidsymp.2011.8

    Article  CAS  PubMed  Google Scholar 

  6. Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M (2006) Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev 86(4):1309–1379

    Article  CAS  PubMed  Google Scholar 

  7. Sun RQ, Lawand NB, Lin Q, Willis WD (2004) Role of calcitonin gene-related peptide in the sensitization of dorsal horn neurons to mechanical stimulation after intradermal injection of capsaicin. J Neurophysiol 92(1):320–326

    Article  CAS  PubMed  Google Scholar 

  8. Godoy GR, Liebano RE, Corrêa JB, Hochman B, Ferreira LM (2010) Capsaicin on the viability of random-pattern skin flaps in rats. Acta Cir Bras 25(5):440–443

    Article  PubMed  Google Scholar 

  9. Jancsó G, Pierau FK, Sann H (1993) Mustard oil-induced cutaneous inflammation in the pig. Agents Actions 39(1–2):31–34

    Article  PubMed  Google Scholar 

  10. Grant AD, Pinter E, Salmon AM, Brain SD (2005) An examination of neurogenic mechanisms involved in mustard oil-induced inflammation in the mouse. Eur J Pharmacol 507(1–3):273–280

    Article  CAS  PubMed  Google Scholar 

  11. Nohr D, Schäfer MK, Persson S, Romeo H, Nyberg F, Post C, Ekström G, Weihe E (1999) Calcitonin gene-related peptide gene expression in collagen-induced arthritis is differentially regulated in primary afferents and motoneurons: influence of glucocorticoids. Neuroscience 93(2):759–773

    Article  CAS  PubMed  Google Scholar 

  12. Ahluwalia A, Newbold P, Brain SD, Flower RJ (1995) Topical glucocorticoids inhibit neurogenic inflammation: involvement of lipocortin 1. Eur J Pharmacol 283(1–3):193–198

    Article  CAS  PubMed  Google Scholar 

  13. Rokugo T, Takeuchi T, Ito H (2002) A histochemical study of substance P in the rat spinal cord: effect of transcutaneous electrical nerve stimulation. J Nippon Med Sch 69(5):428–433

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka S, Barron KW, Chandler MJ, Linderoth B, Foreman RD (2001) Low intensity spinal cord stimulation may induce cutaneous vasodilation via CGRP release. Brain Res 896(1–2):183–187

    Article  CAS  PubMed  Google Scholar 

  15. Wang XY, Guo X, Cheng JC, Mi YL, Lai PY (2010) Involvement of calcitonin gene-related peptide innervation in the promoting effect of low-intensity pulsed ultrasound on spinal fusion without decortication. Spine (Phila Pa 1976) 35(26):E1539–E1545. doi:10.1097/BRS.0b013e3181cde89d

    Article  Google Scholar 

  16. Tacani PM, Liebano RE, Pinfildi CE, Gomes HC, Arias VE, Ferreira LM (2010) Mechanical stimulation improves survival in random-pattern skin flaps in rats. Ultrasound Med Biol 36(12):2048–2056. doi:10.1016/j.ultrasmedbio.2010.07.020

    Article  PubMed  Google Scholar 

  17. Misery L (2000) The neuro-immuno-cutaneous system and ultraviolet radiation. Photodermatol Photoimmunol Photomed 16(2):78–81

    Article  CAS  PubMed  Google Scholar 

  18. Legat FJ, Griesbacher T, Schicho R, Althuber P, Schuligoi R, Kerl H, Wolf P (2002) Repeated subinflammatory ultraviolet B irradiation increases substance P and calcitonin gene-related peptide content and augments mustard oil-induced neurogenic inflammation in the skin of rats. Neurosci Lett 329(3):309–313

    Article  CAS  PubMed  Google Scholar 

  19. Liebano RE, Abla LE, Ferreira LM (2008) Effect of low-frequency transcutaneous electrical nerve stimulation (TENS) on the viability of ischemic skin flaps in the rat: an amplitude study. Wound Repair Regen 16(1):65–69. doi:10.1111/j.1524-475X.2007.00332.x

    Article  PubMed  Google Scholar 

  20. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25(2):102–106

    Article  PubMed  Google Scholar 

  21. Nishioka MA, Pinfildi CE, Sheliga TR, Arias VE, Gomes HC, Ferreira LM (2012) LED (660 nm) and laser (670 nm) use on skin flap viability: angiogenesis and mast cells on transition line. Lasers Med Sci 27(5):1045–1050. doi:10.1007/s10103-011-1042-7

    Article  PubMed  Google Scholar 

  22. Dawood MS, Salman SD (2012) Low level diode laser accelerates wound healing. Lasers Med Sci 28(3):941–945. doi:10.1007/s10103-012-1182-4

    Article  PubMed  Google Scholar 

  23. Whelan HT, Buchmann EV, Dhokalia A, Kane MP, Whelan NT, Wong-Riley MT, Eells JT, Gould LJ, Hammamieh R, Das R, Jett M (2003) Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J Clin Laser Med Surg 21(2):67–74

    Article  PubMed  Google Scholar 

  24. Hussein AJ, Alfars AA, Falih MA, Hassan AN (2011) Effects of a low level laser on the acceleration of wound healing in rabbits. N Am J Med Sci 3(4):193–197. doi:10.4297/najms.2011.3193

    Article  PubMed Central  PubMed  Google Scholar 

  25. Dadpay M, Sharifian Z, Bayat M, Bayat M, Dabbagh A (2012) Effects of pulsed infra-red low level-laser irradiation on open skin wound healing of healthy and streptozotocin-induced diabetic rats by biomechanical evaluation. J Photochem Photobiol B 111:1–8. doi:10.1016/j.jphotobiol.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  26. Mittermayr R, Osipov A, Piskernik C, Haindl S, Dungel P, Weber C, Vladimirov YA, Redl H, Kozlov AV (2007) Blue laser light increases perfusion of a skin flap via release of nitric oxide from hemoglobin. Mol Med 13(1–2):22–29

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Adamskaya N, Dungel P, Mittermayr R, Hartinger J, Feichtinger G, Wassermann K, Redl H, van Griensven M (2011) Light therapy by blue LED improves wound healing in an excision model in rats. Injury 42(9):917–921

    Article  PubMed  Google Scholar 

  28. Bonatti S, Hochman B, Tucci-Viegas VM, Furtado F, Pinfildi CE, Pedro AC, Ferreira LM (2011) In vitro effect of 470 nm LED (light emitting diode) in keloid fibroblasts. Acta Cir Bras 26(1):25–30

    PubMed  Google Scholar 

  29. Snyder SK, Byrnes KR, Borke RC, Sanchez A, Anders JJ (2002) Quantitation of calcitonin gene-related peptide mRNA and neuronal cell death in facial motor nuclei following axotomy and 633 nm low power laser treatment. Lasers Surg Med 31(3):216–222

    Article  PubMed  Google Scholar 

  30. Ohno T (1997) Pain suppressive effect of low power laser irradiation. A quantitative analysis of substance P in the rat spinal dorsal root ganglion. Nihon Ika Daigaku Zasshi 64(5):395–400

    CAS  PubMed  Google Scholar 

  31. Borba GC, Hochman B, Liebano RE, Enokihara MM, Ferreira LM (2011) Does preoperative electrical stimulation of the skin alter the healing process? J Surg Res 166(2):324–329. doi:10.1016/j.jss.2009.08.018

    Article  PubMed  Google Scholar 

  32. Ferreira LM, Gragnani A, Furtado F, Hochman B (2009) Control of the skin scarring response. An Acad Bras Cienc 81(3):623–629

    Article  PubMed  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254

    Google Scholar 

  34. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321. doi:10.1038/nature07039

    Article  CAS  PubMed  Google Scholar 

  35. Akaishi S, Ogawa R, Hyakusoku H (2008) Keloid and hypertrophic scar: neurogenic inflammation hypotheses. Med Hypotheses 71(1):32–38. doi:10.1016/j.mehy.2008.01.032

    Article  CAS  PubMed  Google Scholar 

  36. Toyoda M, Luo Y, Makino T, Matsui C, Morohashi M (1999) Calcitonin gene-related peptide upregulates melanogenesis and enhances melanocyte dendricity via induction of keratinocyte-derived melanotrophic factors. J Investig Dermatol Symp Proc 4(2):116–125

    Article  CAS  PubMed  Google Scholar 

  37. Steinhoff M, Ständer S, Seeliger S, Ansel JC, Schmelz M, Luger T (2003) Modern aspects of cutaneous neurogenic inflammation. Arch Dermatol 139(11):1479–1488

    Article  PubMed  Google Scholar 

  38. Mikami N, Fukada S, Yamamoto H, Tsujikawa K (2012) The Regulatory Mechanisms of Calcitonin Gene-related Peptide (CGRP) in Skin Inflammation. Yakugaku Zasshi 132(11):1211–1215

    Article  CAS  PubMed  Google Scholar 

  39. Lui PP, Chan LS, Fu SC, Chan KM (2010) Expression of sensory neuropeptides in tendon is associated with failed healing and activity-related tendon pain in collagenase-induced tendon injury. Am J Sports Med 38(4):757–764. doi:10.1177/0363546509355402

    Article  PubMed  Google Scholar 

  40. Eslamian L, Borzabadi-Farahani A, Hassanzadeh-Azhiri A, Badiee MR, Fekrazad R (2013) The effect of 810-nm low-level laser therapy on pain caused by orthodontic elastomeric separators. Lasers Med Sci. Jan 20 (Epub ahead of print)

  41. Dirmeier M, Capellino S, Schubert T, Angele P, Anders S, Straub RH (2008) Lower density of synovial nerve fibres positive for calcitonin gene-related peptide relative to substance P in rheumatoid arthritis but not in osteoarthritis. Rheumatology (Oxford) 47(1):36–40

    Article  CAS  Google Scholar 

  42. Schmid HA, Jansky L, Pierau FK (1993) Temperature sensitivity of neurons in slices of the rat PO/AH area: effect of bombesin and substance P. Am J Physiol 264(2 Pt 2):R449–R455

    CAS  PubMed  Google Scholar 

  43. Bulut K, Felderbauer P, Deters S, Hoeck K, Schmidt-Choudhury A, Schmidt WE, Hoffmann P (2008) Sensory neuropeptides and epithelial cell restitution: the relevance of SP- and CGRP-stimulated mast cells. Int J Colorectal Dis 23(5):535–541. doi:10.1007/s00384-008-0447-7

    Article  PubMed  Google Scholar 

  44. Pinfildi CE, Liebano RE, Hochman BS, Enokihara MM, Lippert R, Gobbato RC, Ferreira LM (2009) Effect of low-level laser therapy on mast cells in viability of the transverse rectus abdominis musculocutaneous flap. Photomed Laser Surg 27(2):337–343. doi:10.1089/pho.2008.2295

    Article  PubMed  Google Scholar 

  45. Legat FJ, Wolf P (2009) Cutaneous sensory nerves: mediators of phototherapeutic effects? Front Biosci 14:4921–4931

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológicowww.cnpq.br), agency of the Ministry of Science, Technology and Innovation, for the financial support and NUPEN (Research and Education Center for Photo Therapy in Health Sciences—www.nupen.com.br) for providing technical support and the laser and LED equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Hochman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochman, B., Pinfildi, C.E., Nishioka, M.A. et al. Low-level laser therapy and light-emitting diode effects in the secretion of neuropeptides SP and CGRP in rat skin. Lasers Med Sci 29, 1203–1208 (2014). https://doi.org/10.1007/s10103-013-1494-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1494-z

Keywords

Navigation