Skip to main content

Advertisement

Log in

The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Currently, laser radiation is used routinely in medical applications. For infrared lasers, bone ablation and the healing process have been reported, but no laser systems are established and applied in clinical bone surgery. Furthermore, industrial laser applications utilize computer and robot assistance; medical laser radiations are still mostly conducted manually nowadays. The purpose of this study was to compare the histological appearance of bone ablation and healing response in rabbit radial bone osteotomy created by surgical saw and ytterbium-doped fiber laser controlled by a computer with use of nitrogen surface cooling spray. An Ytterbium (Yb)-doped fiber laser at a wavelength of 1,070 nm was guided by a computer-aided robotic system, with a spot size of 100 μm at a distance of approximately 80 mm from the surface. The output power of the laser was 60 W at the scanning speed of 20 mm/s scan using continuous wave system with nitrogen spray level 0.5 MPa (energy density, 3.8 × 104 W/cm2). Rabbits radial bone osteotomy was performed by an Yb-doped fiber laser and a surgical saw. Additionally, histological analyses of the osteotomy site were performed on day 0 and day 21. Yb-doped fiber laser osteotomy revealed a remarkable cutting efficiency. There were little signs of tissue damage to the muscle. Lased specimens have shown no delayed healing compared with the saw osteotomies. Computer-assisted robotic osteotomy with Yb-doped fiber laser was able to perform. In rabbit model, laser-induced osteotomy defects, compared to those by surgical saw, exhibited no delayed healing response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burgner J, Muller M, Raczkowsky J, Worn H (2010) Ex vivo accuracy evaluation for robot assisted laser bone ablation. Int J Med Robot 6(4):489–500. doi:10.1002/rcs.366

    Article  CAS  PubMed  Google Scholar 

  2. Stubinger S, Ghanaati S, Saldamli B, Kirkpatrick CJ, Sader R (2009) Er:YAG laser osteotomy: preliminary clinical and histological results of a new technique for contact-free bone surgery. Eur Surg Res 42(3):150–156. doi:10.1159/000197216

    Article  CAS  PubMed  Google Scholar 

  3. Nuss RC, Fabian RL, Sarkar R, Puliafito CA (1988) Infrared laser bone ablation. Lasers Surg Med 8(4):381–391

    Article  CAS  PubMed  Google Scholar 

  4. Stubinger S, Nuss K, Sebesteny T, Saldamli B, Sader R, von Rechenberg B (2010) Erbium-doped yttrium aluminium garnet laser-assisted access osteotomy for maxillary sinus elevation: a human and animal cadaver study. Photomed Laser Surg 28(1):39–44. doi:10.1089/pho.2008.2442

    Article  PubMed  Google Scholar 

  5. Stubinger S, Nuss K, Landes C, von Rechenberg B, Sader R (2008) Harvesting of intraoral autogenous block grafts from the chin and ramus region: preliminary results with a variable square pulse Er:YAG laser. Lasers Surg Med 40(5):312–318. doi:10.1002/lsm.20639

    Article  PubMed  Google Scholar 

  6. Stubinger S, Biermeier K, Bachi B, Ferguson SJ, Sader R, von Rechenberg B (2010) Comparison of Er:YAG laser, piezoelectric, and drill osteotomy for dental implant site preparation: a biomechanical and histological analysis in sheep. Lasers Surg Med 42(7):652–661. doi:10.1002/lsm.20944

    Article  PubMed  Google Scholar 

  7. Nelson JS, Orenstein A, Liaw LH, Berns MW (1989) Mid-infrared erbium:YAG laser ablation of bone: the effect of laser osteotomy on bone healing. Lasers Surg Med 9(4):362–374

    Article  CAS  PubMed  Google Scholar 

  8. Small IA, Osborn TP, Fuller T, Hussain M, Kobernick S (1979) Observations of carbon dioxide laser and bone bur in the osteotomy of the rabbit tibia. J Oral Surg 37(3):159–166

    CAS  PubMed  Google Scholar 

  9. Clauser C, Clayman L (1989) Effects of exposure time and pulse parameters on CO2 laser osteotomies. Lasers Surg Med 9(1):22–29

    Article  CAS  PubMed  Google Scholar 

  10. Bayly JG, Kartha VB, Stevens WH (1963) The absorption spectra of liquid phase H2O, HDO, D2O, from 0.7 μm to 10 μm. Infrared Phys 3(4):211–223. doi:10.1016/0020-0891(63)90026-5

    Article  CAS  Google Scholar 

  11. Doyle BB, Bendit EG, Blout ER (1975) Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolymers 14(5):937–957. doi:10.1002/bip.1975.360140505

    Article  CAS  PubMed  Google Scholar 

  12. Miller GL (1952) Improved infrared photography for electrophoresis. Science 116(3025):687–688

    Article  CAS  PubMed  Google Scholar 

  13. Spencer P, Cobb CM, Wieliczka DM, Glaros AG, Morris PJ (1998) Change in temperature of subjacent bone during soft tissue laser ablation. J Periodontol 69(11):1278–1282

    Article  CAS  PubMed  Google Scholar 

  14. Mainster MA, Sliney DH, Belcher CD 3rd, Buzney SM (1983) Laser photodisruptors. Damage mechanisms, instrument design and safety. Ophthalmology 90(8):973–991

    Article  CAS  PubMed  Google Scholar 

  15. Steinert RF, Puliafito CA (1985) The Nd-YAG laser in ophthalmology. W.B.Saunders, Philadelphia

    Google Scholar 

  16. McDavid VG, Cobb CM, Rapley JW, Glaros AG, Spencer P (2001) Laser irradiation of bone: III. Long-term healing following treatment by CO2 and Nd:YAG lasers. J Periodontol 72(2):174–182. doi:10.1902/jop.2001.72.2.174

    Article  CAS  PubMed  Google Scholar 

  17. Allen GW, Adrian JC (1981) Effects of carbon dioxide laser radiation on bone: an initial report. Mil Med 146(2):120–123

    CAS  PubMed  Google Scholar 

  18. Krause LS, Cobb CM, Rapley JW, Killoy WJ, Spencer P (1997) Laser irradiation of bone. I. An in vitro study concerning the effects of the CO2 laser on oral mucosa and subjacent bone. J Periodontol 68(9):872–880

    Article  CAS  PubMed  Google Scholar 

  19. Gopin BW, Cobb CM, Rapley JW, Killoy WJ (1997) Histologic evaluation of soft tissue attachment to CO2 laser-treated root surfaces: an in vivo study. Int J Periodontics Restorative Dent 17(4):316–325

    CAS  PubMed  Google Scholar 

  20. Friesen LR, Cobb CM, Rapley JW, Forgas-Brockman L, Spencer P (1999) Laser irradiation of bone: II. Healing response following treatment by CO2 and Nd:YAG lasers. J Periodontol 70(1):75–83. doi:10.1902/jop.1999.70.1.75

    Article  CAS  PubMed  Google Scholar 

  21. Leucht P, Lam K, Kim JB, Mackanos MA, Simanovskii DM, Longaker MT, Contag CH, Schwettman HA, Helms JA (2007) Accelerated bone repair after plasma laser corticotomies. Ann Surg 246(1):140–150. doi:10.1097/01.sla.0000258559.07435.b3

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by MEXT KAKENHI no. 24791929. The laser system was provided by Genial Light Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Sotsuka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotsuka, Y., Nishimoto, S., Tsumano, T. et al. The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser. Lasers Med Sci 29, 1125–1129 (2014). https://doi.org/10.1007/s10103-013-1487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1487-y

Keywords

Navigation