Skip to main content

Advertisement

Log in

Comparative clinical study of light analgesic effect on temporomandibular disorder (TMD) using red and infrared led therapy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level laser therapy (LLLT) has been widely applied in pain relief in several clinical situations, including temporomandibular disorders (TMD). However, the effects of LED therapy on TMD has not been investigated. This study aims to evaluate the effects of red and infrared LEDs on: (1) tissue temperature in ex vivo and (2) pain relief and mandibular range of motion in patients with TMD. Thirty patients between 18 and 40 years old were included and randomly assigned to three groups. The two experimental groups were: the red LED (630 ± 10 nm) group and the infrared LED (850 ± 10 nm) group. The irradiation parameters were 150 mW, 300 mW/cm2, 18 J/cm2, and 9 J/point. The positive control group received an infrared laser (780 nm) with 70 mW, 1.7 W/cm2, 105 J/cm2, and 4.2 J/point. LED and laser therapies were applied bilaterally to the face for 60 s/point. Five points were irradiated: three points around the temporomandibular joint (TMJ), one point for the temporalis, and one near the masseter. Eight sessions of phototherapy were performed, twice a week for 4 weeks. Pain induced by palpating the masseter muscle and mandibular range of motion (maximum oral aperture) were measured at baseline, immediately after treatment, 7 days after treatment, and 30 days after treatment. There was an increase in tissue temperature during both the red and the infrared LED irradiation in ex vivo. There was a significant reduction of pain and increase of the maximum oral aperture for all groups (p ≥ 0.05). There was no significant difference in pain scores and maximum oral aperture between groups at baseline or any periods after treatment (p ≥ 0.05). The current study showed that red and infrared LED therapy can be useful in improving outcomes related to pain relief and orofacial function for TMD patients. We conclude that LED devices constitute an attractive alternative for LLLT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fricton JR (2004) Temporomandibular muscle and joint disorders. Pain 109:530

    Article  Google Scholar 

  2. Núñez SC, Garcez AS, Suzuki SS, Ribeiro MS (2006) Management of mouth opening in patients with temporomandibular disorders through low-level laser therapy and transcutaneous electrical neural stimulation. Photomed Laser Surg 24:45–49

    Article  PubMed  Google Scholar 

  3. Weinberg LA (1980) The etiology, diagnosis, and treatment of TMJ dysfunction-pain syndrome. Part II: differential diagnosis. J Prosthet Dent 43:58–70

    Article  CAS  PubMed  Google Scholar 

  4. Ibuldu E, Cakmak A, Disci R, Aydin R (2004) Comparison of laser, dry needling and placebo laser treatments in myofascial syndrome. Photomed Laser Surg 22:306–311

    Article  Google Scholar 

  5. De Medeiros JS, Vieira GF, Nishimura PY (2005) Laser application effects on the bite strength of the masseter muscle, as an orofacial pain treatment. Photomed Laser Surg 23:373–376

    Article  PubMed  Google Scholar 

  6. Emshoff R, Bösch R, Pümpel E, Schöning H, Strobl H (2008) Low-level laser therapy for treatment of temporomandibular joint pain: a double-blind and placebo-controlled trial. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:452–456

    Article  PubMed  Google Scholar 

  7. Conti PCR (1997) Low level laser therapy in the treatment of temporomandibular disorders (TMD): a double blind pilot study. J Craniomandib Pract 15:144–149

    CAS  Google Scholar 

  8. Gur A, Sarac AJ, Cevik R, Altindag O, Sarac S (2004) Efficacy of 904 nm gallium arsenide low level laser therapy in the management of chronic myofascial pain in the neck: a double-blind and randomized trial. Lasers Surg Med 35:229–235

    Article  PubMed  Google Scholar 

  9. Salmos-Brito JA, de Menezes RF, Teixeira CE, Gonzaga RK, Rodrigues BH, Braz R, Bessa-Nogueira RV, Gerbi ME (2013) Evaluation of low-level laser therapy in patients with acute and chronic temporomandibular disorders. Lasers Med Sci 28:57–64

    Article  PubMed  Google Scholar 

  10. Ahrari F, Madani AS, Ghafouri ZS, Tunér J (2013) The efficacy of low-level laser therapy for the treatment of myogenous temporomandibular joint disorder. Lasers Med Sci (in press)

  11. Gökçen-Röhlig B, Kipirdi S, Baca E, Keskin H, Sato S (2012) Evaluation of orofacial function in temporomandibular disorder patients after low-level laser therapy. Acta Odontol Scand 4:1–6

    Google Scholar 

  12. Huang YY, Chen ACH, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7:358–383

    Article  PubMed Central  PubMed  Google Scholar 

  13. de Moraes Maia ML, Ribeiro MA, Maia LG, Stuginski-Barbosa J, Costa YM, Porporatti AL, Conti PC, Bonjardim LR (2013). Evaluation of low-level laser therapy effectiveness on the pain and masticatory performance of patients with myofascial pain. Lasers Med Sci (in press)

  14. Jang H, Lee H (2012) Meta-analysis of pain relief effects by laser irradiation on joint areas. Photomed Laser Surg 30(8):405–417

    Article  PubMed Central  PubMed  Google Scholar 

  15. Chow R et al (2011) Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomed Laser Surg 29:365–381

    Article  PubMed  Google Scholar 

  16. Kulekcioglu S, Sivrioglu K, Ozcan O, Parlak M (2003) Effectiveness of low–level laser therapy in temporomandibular disorder. Scand J Rheumatol 32:114–118.

    Google Scholar 

  17. Ferreira L A, de Oliveira R G, Guimarães J P, Carvalho A C P, De Paula, M V Q (2013). Laser acupuncture in patients with temporomandibular dysfunction: a randomized controlled trial. Lasers Med Sci (in press)

  18. Hotta PT, Hotta TH, Bataglion C, Bataglion SA, de Souza Coronatto EA, Siéssere S, Regalo SCH (2010) Emg analysis after laser acupuncture in patients with temporomandibular dysfunction (TMD). Implications for practice. Complement Ther Clin Pract 16(3):158–160

    Article  PubMed  Google Scholar 

  19. Fikackova H, Dostalova T, Navratil L, Klaschka J (2007) Effectiveness of low-level laser therapy in temporomandbular joint disorders: a placebo-controlled study. Photomed Laser Surg 25:297–303

    Article  CAS  PubMed  Google Scholar 

  20. Oz S, Gokçen-Rohlig B, Saruhanoglu A, Tuncer EB (2010) Management of myofacial pain: low-level laser therapy versus occlusal splints. J Craniofac Surg 21:1722–1728

    Article  PubMed  Google Scholar 

  21. Walsh LJ (1997) The current status of low level laser therapy in dentistry, part 1, soft tissue applications. Aust Dent J 42(4):247–254

    Article  CAS  PubMed  Google Scholar 

  22. Stadler I, Lanzafame RJ, Oskoui P, Zhang RY, Coleman J, Whittaker M (2004) Alteration of skin temperature during low-level laser irradiation at 830 nm in a mouse model. Photomed Laser Sur 22(3):227–231

    Article  Google Scholar 

  23. Sopena EP, Serra MC, Sopena M, Lopez-Silva SM (1996) Cuban experience for therapy in dentistry with light-emitting diodes. Proc SPIE 2630:147–154

    Article  Google Scholar 

  24. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25:102–106

    Article  PubMed  Google Scholar 

  25. Bastos JLN, Lizarelli RFZ, Parizotto NA (2009) Comparative study of laser and LED systems of low intensity applied to tendon healing. Laser Physics 19(9):1925–1931

    Article  CAS  Google Scholar 

  26. Lizarelli RFZ, Miguel FAC, Freitas–Pontes KM, Villa GEP, Nunez SC, Bagnato VS (2010) Dentin hypersensitivity clinical study comparing LILT and LEDT keeping the same irradiation parameters. Laser Physics Letters 7(11):805–811

    Article  Google Scholar 

  27. Barolet D (2008) Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg 27(4):227–238

    Article  CAS  PubMed  Google Scholar 

  28. Paolillo FR, Borghi-Silva A, Parizotto NA, Kurachi C, Bagnato VS (2011) New treatment of cellulite with infrared-LED illumination applied during high-intensity treadmill training. J Cosmet Laser Ther 13(4):166–171

    PubMed  Google Scholar 

  29. Paolillo FR, Milan JC, Aniceto IV, Barreto SG, Rebelatto JR, Borghi-Silva A, Bagnato VS (2011) Effects of infrared-LED illumination applied during high-intensity treadmill training in postmenopausal women. Photomed Laser Surg 29(9):639–645

    Article  PubMed  Google Scholar 

  30. Paolillo FR, Corazza AV, Borghi-Silva A, Parizotto NA, Kurachi C, Bagnato VS (2013) Infrared LED irradiation applied during high-intensity treadmill training improves maximal exercise tolerance in postmenopausal women: a 6-month longitudinal study. Lasers Med Sci 28:415–422

    Article  PubMed  Google Scholar 

  31. Paolillo FR, Lins EC, Corazza AV, Kurachi C, Bagnato VS (2013) Thermography applied during exercises with or without infrared light-emitting diode irradiation: individual and comparative analysis. Photomed Laser Surg 31(7):349–355

    Article  PubMed Central  PubMed  Google Scholar 

  32. Vinck E, Coorevits P, Cagnie B, De Muynck M, Vanderstraeten G, Cambier D (2005) Evidence of changes in sural nerve conduction mediated by light emitting diode irradiation. Lasers Med Sci 20:35–40

    Article  PubMed  Google Scholar 

  33. Petrucci A, Sgolastra F, Gatto R, Mattei A, Monaco A (2011) Effectiveness of low-level laser therapy in temporomandibular disorders: a systematic review and meta-analysis. J Orofac Pain 25(4):298

    PubMed  Google Scholar 

  34. Dworkin SF, LeResche L (1992) Research diagnostic criteria for temporomandibular disorders: review, criteria, examinations and specifications, critique. J Craniomandib Disord 6(4):301–355

    CAS  PubMed  Google Scholar 

  35. Pereira FJ Jr, Huggins KH, Dworkin SF et al (2004) Critérios de diagnóstico para pesquisa das desordens temporomandibulares RDC/TMD. Tradução oficial para a língua portuguesa. J Bras Clin Odontol Int 8:384–395

    Google Scholar 

  36. Komisnky M, Lucena LBS, Siqueira JTT et al (2004) Adaptação cultural do questionário "Research diagnostic criteria for temporomandibular disorders" axis II para o português. Jl Bras Clin Odontol Int 4(1):51–61

    Google Scholar 

  37. Florez FLE, Andrade MF, Campos EA, Oliveira Júnior OB, Bagnato VS, Panhoca VH (2011) In-office dental bleaching efficacy assessment in function of the light exposure regime by digital colorimetric reflectance spectroscopy. J Dent Oral Hyg 3(8):99–105

    CAS  Google Scholar 

  38. Leonard DL, Charlton DG, Roberts HW, Cohen ME (2002) Polymerization efficiency of LED curing lights. J Esthet Restor Dent 14(5):286–295

    Article  PubMed  Google Scholar 

  39. Svanberg S (2002) Tissue diagnostics using lasers. In: Waynant RW (ed) Lasers in medicine. CRC Press, Boca Raton, FL, pp 135–169

    Google Scholar 

  40. Makihara E, Makihara M, Masumi SI, Sakamoto E (2005) Evaluation of facial thermographic changes before and after low-level laser irradiation. Photomed Laser Ther 23(2):191–195

    Article  Google Scholar 

  41. Makihara E, Masumi SI (2008) Blood flow changes of a superficial temporal artery before and after low-level laser irradiation applied to the temporomandibular joint area. J Jpn Prosthodont Soc 52(2):167–170

    Article  Google Scholar 

  42. Lowe AS, Baxter GD, Walsh DM, Allen JM (1994) Effect of low intensity laser (830 nm) irradiation on skin temperature and antidromic conduction latencies in the human median nerve: relevance of radiant exposure. Lasers Surg Med 14(1):40–46

    Article  CAS  PubMed  Google Scholar 

  43. Lowe AS, Baxter GD, Walsh DM, Allen JM (1995) The relevance of pulse repetition rate and radiant exposure to the neurophysiological effects of low-intensity laser (820 nm/pulsed wave) irradiation upon skin temperature and antidromic conduction latencies in the human median nerve. Laser Med Sci 10(4):253–259

    Article  Google Scholar 

  44. Noble JG, Lowe AS, Baxter GD (2001) Monochromatic infrared irradiation (890 nm): effect of a multisource array upon conduction in the human median nerve. J Clin Laser Med Surg 19(6):291–295

    Article  CAS  PubMed  Google Scholar 

  45. Pöntinen PJ (2000) Laseracupuncture. In: Simunovic Z (ed) Lasers in medicine and dentistry: basic and up-to-date clinical application of low-energy-level laser therapy (LLLT). Vitgraf, Rijeka, Croatia, pp 55–475

    Google Scholar 

  46. Hode T, Jenkins P, Jordison S, Hode L. (2011). To what extent is coherence lost in tissue? SPIE BiOS-International Society for Optics and Photonics, Bellingham, WA, pp. 788703–788703

  47. Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2004) Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 4(5):559–567

    Article  CAS  PubMed  Google Scholar 

  48. Kelencz CA, Muñoz IS, Amorim CF, Nicolau RA (2010) Effect of low-power gallium-aluminum-arsenium noncoherent light (640 nm) on muscle activity: a clinical study. Photomed Laser Surg 28(5):647–652

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the National Council for Scientific and Technological Development (CNPq)—grant no. 552720/2009-7 and the São Paulo Research Foundation (FAPESP)—grant no. 2013/07276-1 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Hugo Panhoca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panhoca, V.H., de Fatima Zanirato Lizarelli, R., Nunez, S.C. et al. Comparative clinical study of light analgesic effect on temporomandibular disorder (TMD) using red and infrared led therapy. Lasers Med Sci 30, 815–822 (2015). https://doi.org/10.1007/s10103-013-1444-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1444-9

Keywords

Navigation