Skip to main content

Advertisement

Log in

Effect of low-level laser therapy irradiation and Bio-Oss graft material on the osteogenesis process in rabbit calvarium defects: a double blind experimental study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aims to assess the effect of low-level laser therapy (LLLT) irradiation and Bio-Oss graft material on the osteogenesis process in the rabbit calvarium defects. Twelve white male New Zealand rabbits were included in this study. Four 8-mm diameter identical defects were prepared on each rabbit's calvarium. One site was left as an untreated control (C), the second site was filled with Bio-Oss (B), the third site was treated with laser irradiation (L), and the fourth site treated with Bio-Oss and laser irradiation (B + L). In the laser group, a diode laser (wavelength 810 nm, output power 300 mW, irradiation mode CW, energy density 4 J/cm2) was applied immediately after surgery and then one other day for the next 20 days. After 4 and 8 weeks, the animals were sacrificed and histological and histomorphometric examinations were performed and the data were subjected to Friedman and repeated measurements ANOVA tests. Significant differences were not found regarding inflammation severity, foreign body reactions, and vitality of newly formed bone on 4th and 8th week after operation. The mean amount of new bone was 15.83 and 18.5 % in the controls on the 4th and 8th week; 27.66 and 25.16 % in the laser-irradiated group; 35.0 and 41.83 % in Bio-Oss and 41.83 and 47.0 % in the laser + Bio-Oss treated specimens with significant statistical differences (p <0.05). Application of LLLT in combination with Bio-Oss® can promote bone healing. Therefore, LLLT may be clinically beneficial in promoting bone formation in skeletal defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kauschke E, Rumpel E, Fanghanel J, Bayerlein T, Gedrange T, Proff P (2006) The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBone and Straumann Bone Ceramic). Folia Morphol (Warsz) 65(1):37–42

    CAS  Google Scholar 

  2. Habibovic P, Kruyt MC, Juhl MV, Clyens S, Martinetti R, Dolcini L, Theilgaard N, van Blitterswijk CA (2008) Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J Orthop Res 26(10):1363–1370

    Article  CAS  PubMed  Google Scholar 

  3. Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P (2008) Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 9:1177–1188

    Article  Google Scholar 

  4. Newman MG, Takei HH, Carranza FA (2006) Carranza's clinical periodontology, 10th edn. WB Saunders Co, America

    Google Scholar 

  5. Brown KLB, Cruess RL (1982) Bone and cartilage transplantation surgery. J Bone Jt Surg Am 64:270–279

    CAS  Google Scholar 

  6. Stauropoulos A, Kostopoulos L, Nyengaard JR, Karring T (2003) Deproteinized bovine bone (Bio-Oss) and bio active glass (Biogram) arrest bone formation when used as an adjust to guided tissue regeneration (GTR): an experimental study in the rat. J Clin Periodontol 7:636–643

    Article  Google Scholar 

  7. Hammerle CH, Chiantella GC, Karring T, Lang NP (1998) The effect of a deproteinized bovine bone mineral on bone regeneration around titanium dental implants. Clin Oral Impl Res 3:151–162

    Article  Google Scholar 

  8. Iezzi G, Scarano A, Mangano C, Cirotti B, Piattelli A (2008) Histologic results from a human implant retrieved due to fracture 5 years after insertion in a sinus augmented with an organic bovine bone. J Periodontol 79(1):192–198

    Article  PubMed  Google Scholar 

  9. Scarano A, Pecora G, Piattelli M, Piattelli A (2004) Osseointegration in a sinus augmented with bovine porous bone mineral: histological results in an implant retrieved 4 years after insertion. A case report. J Periodontol 75(8):1161–1166

    Article  PubMed  Google Scholar 

  10. Zucchelli G, Amor C, Montebugnoli L (2003) Enamel matrix proteins and bovine porous bone mineral in the treatment of intra bony defects: a comparative controlled clinical trial. J Periodontal 74:1725–1735

    Article  CAS  Google Scholar 

  11. Luger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102

    Article  CAS  PubMed  Google Scholar 

  12. Lam TS, Abergel RP, Meeker CA, Castel JC, Dwyer RM, Uitto J (1982) Laser stimulation of collagen synthesis in human skin fibroblast cultures. Lasers Life Sci 1:61–77

    Google Scholar 

  13. Anders JJ, Borke RC, Woolery SK, Merwe WP (1993) Low power laser irradiation alters the rate of regeneration of the rat facial nerve. Lasers Surg Med 13:72–82

    Article  CAS  PubMed  Google Scholar 

  14. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU (2004) Effects of low-intensity of laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med 35(2):117–120

    Article  PubMed  Google Scholar 

  15. Trelles MA, Mayayo E (1987) Bone fracture consolidates faster with low level laser. Lasers Surg Med 7:36–45

    Article  CAS  PubMed  Google Scholar 

  16. Barushka O, Yakoobi T, Oron U (1995) Effect of low-energy laser (He–Ne) irradiation on the process of bone repair in the rat tibia. Bone 16:47–55

    CAS  PubMed  Google Scholar 

  17. Yakoobi T, Maltz L, Oron U (1996) Promotion of bone repair of the tibia in rats by low energy laser (He–Ne) irradiation. Calcif Tiss Int 59:297–300

    Article  Google Scholar 

  18. Dortbudak O, Haas R, Maillath-Pokomy G (2000) Biostimulation with a diode soft laser. Clin Oral Impl Res 2:540–545

    Article  Google Scholar 

  19. OzawaY SN, Kariya G, Abiko Y (1998) Low energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cell. Bone 22:347–354

    Article  Google Scholar 

  20. Guzzardella GA, Guzzardella P, Torricelli N, Nicoli-Aldini N, Giardino R (2003) Osseointegration of endosseous ceramic implants after postoperative low power laser stimulation: an in vivo comparative study. Clin Oral Impl Res 14:226–232

    Article  Google Scholar 

  21. Kahdra M, Kasem N, Ellingsen JE, Haanes HR, Lyngstadaas SP (1997) Enhancement of bone formation in rat calvarial bon defects using low level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:693–700

    Article  Google Scholar 

  22. Basford JR (1995) Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 16:331–342

    Article  CAS  PubMed  Google Scholar 

  23. Walsh LJ (1997) The current status of low level laser therapy in dentistry. Part I. Soft tissue applications. Aust Dent J 42:247–254

    Article  CAS  PubMed  Google Scholar 

  24. Gross AJ, Jelkmann W (1990) Helium-neon laser irradiation inhibits the growth of kidney epithelial cells in culture. Lasers Surg Med 10:40–41

    Article  CAS  PubMed  Google Scholar 

  25. Sattayut S, Hughes F, Bradly P (1999) 820 nm gallium aluminium arsenide laser modulation of prostaglandin E2 production in interleukin-1 stimulated myoblasts. Laser Therapy 11:88–95

    Article  Google Scholar 

  26. Rokn AR, Khodadoostan MA, Reza Rasouli Ghahroudi AA, Motahhary P, Kharrazi Fard MJ, Bruyn HD, Afzalifar R, Soolar E, Soolari A (2011) Bone formation with two types of grafting materials: a histologic and histomorphometric study. Open Dent J 5:96–104

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lindhe J, Berglundh T (1997) Healing around implant placed in bone defects treated with Bio-Oss. An experimental study in the dog. Clin Oral Implants Res 8(2):117–124

    Article  PubMed  Google Scholar 

  28. Valentini P, Abensur DJ (2003) Maxillary sinus grafting with an organic bovine bone: a clinical report of long- term results. Int Oral Maxillofac Impl 18(4):556–560

    Google Scholar 

  29. Richardson CR, Melloning JT, Brunsvold MA, Donnel MC, Cochran HTDL (1999) Clinical evaluation of Bio-Oss: a bovine-derived xenograft for the treatment of periodontal osseous defect in humans. J Clin Periodontol 26(7):421–428

    Article  CAS  PubMed  Google Scholar 

  30. Hammerle CH, Olah AJ, Shmid J, Fluckiger L, Gogolewski S, Winkler JR, Lang NP (1997) The biological effect of natural bone mineral on bone new formation on the rabbit skull. Clin Oral Implants Res 8(3):198–207

    Article  CAS  PubMed  Google Scholar 

  31. Nomura T, Katz JL, Powers MP, Satio C (2005) Evaluation of the micromechanical elastic properties of potential bone-grafting materials. J Biomed Mater Res B Appl Bio Mater 73:29–34

    Article  Google Scholar 

  32. Sculean A, Stavropoulos A, Widisch P, Keglevich T, Karring T, Gera I (2004) Healing of human intrabony defects following regenerative periodontal therapy with a bovine-derived xenograft and guided tissue regeneration. Clin Oral Investing 8:70–74

    CAS  Google Scholar 

  33. Stavropoulos A, Kostopoulos L, Nyengaard JR, Karring T (2004) Deproteinized bovine bone (Bio-Oss) and bio-active glass (Biogran) arrestion (GTR): an experimental study in the rat. J Clin Periodontal 30:636–643

    Article  Google Scholar 

  34. Fang TD, Salim A, Xia W, Nacamuli RP, Guccione S, Song HM, Carano RA, Filvaroff EH, Bednarski MD, Giaccia AJ, Longaker MT (2005) Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res 20(7):1114–1124

    Article  CAS  PubMed  Google Scholar 

  35. Jakse N, Payer M, Tangl S, Berghold A, Kirmeier R, Lorenzoni M (2007) Influence of low-level laser treatment on bone regeneration and osseointegration of dental implants following sinus augmentation. An experimental study on sheep. Clin Oral Implants Res 18(4):517–524

    Article  PubMed  Google Scholar 

  36. Payer M, Jakse N, Pertl C, Truschnegg A, Lechner L, Eskici A (2005) The clinical effect of LLLT in endodontic Surgery: a prospective study on 72 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100:375–379

    Article  PubMed  Google Scholar 

  37. Lopes CB, Pacheco MT, Silveira L Jr, Duarte J, Cangussú MC, Pinheiro AL (2007) The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fractures treated with wire osteosynthesis: Raman spectroscopy study. J Photochem Photobiol 89(2–3):125–130

    Article  CAS  Google Scholar 

  38. Oron U, Yaakobi T, Oron A, Hayam G, Gepstein L, Rubin O (2001) Attenuation of infarct size in rats and dogs after myocardial infarction by low energy laser irradiation. Lasers Surg Med 28:204–211

    Article  CAS  PubMed  Google Scholar 

  39. Yaakobi T, Maltz L, Uoron U (1996) Promotion of bone repair in the cortical bone of the tibia in rats by low energy laser (He–Ne) irradiation. Calcif Tissue Int 59:297–300

    Article  CAS  PubMed  Google Scholar 

  40. Morimoto Y, Arai T, Kikuchi M, Nakajima S, Nakamura H (1994) Effects of low intensity Argon laser irradiation on mitochondria respiration. Lasers Surg Med 15:191–199

    Article  CAS  PubMed  Google Scholar 

  41. Yu W, McGowan M, Ippolito K, Lanzafame RJ (1997) Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol 66:866–871

    Article  CAS  PubMed  Google Scholar 

  42. Chen JW, Zhou YC (1989) Effect of low level carbon dioxide laser radiation on biochemical metabolism of rabbit mandibular bone callus. Laser Therapy 2:83–87

    Google Scholar 

  43. Pinheiro ALB, Gerbi ME (2006) Photo-engineering of bone repair processes. Photomed Laser Surg 24:169–178

    Article  CAS  PubMed  Google Scholar 

  44. Gerbi ME, Pinheiro ALB, Marzola C, Limeira Júnior FA, Ramalho LMP, Ponzi EAC, Soares AO, Carvalho LCB, Lima AV, Goncalves TO (2005) Assessment of bone repair associated with the use of organic bovin bone and membrane irradiated at 830- nm. Photomed Laser Surg 23:382–388

    Article  PubMed  Google Scholar 

  45. Lopes CB, Pinheiro ALB, Sathaiah S, Duarte J, Martins MC (2005) Infrared laser light reduce loading time of dental implants: a Raman spectroscopy study. Photomed Laser Surg 23:27–31

    Article  CAS  PubMed  Google Scholar 

  46. Tay JYY, Bay BH, Ye OJF, Harris M, Meghji S, Dheen ST (2004) Identification of RANKL in osteolytic lesions of the facial skeleton. J Dent Res 83:347–353

    Google Scholar 

  47. Kanzaki H, Chiba M, Shimizu Y, Mitani H (2001) Dual regulation of osteoclost differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res 80:887–891

    Article  CAS  PubMed  Google Scholar 

  48. Lacey DL, Timms E, Tan HL, Kelly MJ, Dunstan CR, Burgess T (1998) Osteoprotegrin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  49. Kim YD, Kim SS, Hwang DS, Kim SG, Kwon YH, Shin SH, Kim UK, Kim JR, Chung IK (2007) Effect of low-level laser treatment after installation of dental titanium implant-immunohistochemical study of RANKL, RANK, OPG: an experimental study in rats. Lasers Surg Med 39(5):441–450

    Article  PubMed  Google Scholar 

  50. Udagawa N (2000) Osteoprotegrin produced by osteoblasts is an important regulator in osteoclast development and function. Ensocrinology 141:3478–3484

    CAS  Google Scholar 

  51. Kralauer T (2008) Nuclear factor kappa B: Fine-tuning a central integrator of diverse biologic stimuli. Int Rev Immunol 27(5):286–292

    Article  Google Scholar 

  52. Artzi Z, Tal H, Dayan D (2000) Porous bovine bone mineral in healing of human extraction sockets. Histomorphologic evaluation of 9 months. J Periodontol 71(6):1015–1023

    Article  CAS  PubMed  Google Scholar 

  53. Torres J, Tamimi FM, Tresquerres IF, Alkhraisat MH, Khraisat A (2008) Effect of solely applied platted rich plasma on osseous regeneration compared to Bio-Oss: a morphometric and densitometric study of rabbit calvarium. Clin Implant Dent Rel Res 10(2):106–112

    Article  Google Scholar 

  54. Kohli SS, Kohli VS (2011) Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J Endocrinol Metab 15(3):175–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Tapety FL, Amizukin UK, Nonura S, Maeda T (2004) A histological evaluation of the involvement of Bio-Oss osteoblastic differentiation and matrix synthesis. Clin Oral Implants Res 15(3):315–324

    Article  PubMed  Google Scholar 

  56. Avera SP, Stampley WA, Callister BS (1997) Histologic and clinical observation of resorbable and non-resorbable barrier membranes used in maxillary sinus graft containment. Int J Oral Maxillofac Implants 12:88–94

    CAS  PubMed  Google Scholar 

  57. Schliephake H, Dord M, Planck H, Hierlemann H, Jakob A (2000) Guided bon regeneration around endosseus implants using a resorbable membrane vs aPTFE membrane. Clin Oral Implants Res 11:230–241

    Article  CAS  PubMed  Google Scholar 

  58. Piatelli M, Favero GA, Scarano A, Orsini G, Piatelli A (1999) Bone reaction to an organic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term. Int J Oral Maxillofac Implants 14:835–840

    Google Scholar 

  59. Martinasso G, Mozzati M, Pol R, Canuto RA, Muzio G (2007) Effect of super pulsed laser irradiation on bone formation in a human osteoblast-like cell line. Minerva Stomatol 56(1-2):27–30

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Fekrazad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasouli Ghahroudi, A.A., Rokn, A.R., Kalhori, K.A.M. et al. Effect of low-level laser therapy irradiation and Bio-Oss graft material on the osteogenesis process in rabbit calvarium defects: a double blind experimental study. Lasers Med Sci 29, 925–932 (2014). https://doi.org/10.1007/s10103-013-1403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1403-5

Keywords

Navigation