Skip to main content

Advertisement

Log in

Influence of the hydration state on the ultrashort laser ablation of dental hard tissues

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Since about 40 years, laser-based surgical tools have been used in medicine and dentistry to improve clinical protocols. In dentistry, femtosecond lasers have been claimed to be a potential ablation tool. It would, however, be good to perform a more fundamental investigation to understand ablation interaction mechanisms and possible side effects, depending on different specific components of the target tissue. The goal of this study is to show the changes of ablation characteristics in the femtosecond regime at different levels of structural water within dental hard tissues. Thirty human teeth samples were split into three hydration groups and subdivided into dentin and enamel groups (n = 5). The specimens were irradiated using a 70-fs Ti:sapphire laser (with a 1-kHz repetition rate and a 801-nm wavelength output). Ablation was performed using five different power levels and three exposure times. The results clearly show an inversely proportional dependence of the ablation threshold to the hydration level of the tissues. A known mathematical model was adapted in order to include the influence of the changes on the relative fractional composition of dental hard tissues. This analysis was consistent with the experimental results regarding the ablation threshold. High thermal and mechanical damages were observed as a high repetition rate had been applied. Macroscopic images and scanning electron microscopy images were used to preliminarily analyze both the thermal and mechanical damage thresholds, and their variations according to the hydration level present. By manipulating the hydration states, the modifications in the proportions of the molecules that build dental hard tissues clearly shift, and therefore, the characteristics of a plasma-induced ablation change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goldman L, Hornby P, Meyer R, Goldman B (1964) Impact of the laser on dental caries. Nature 203:417–417

    Google Scholar 

  2. Stern RH, Sognnaes RF (1964) Laser beam effect on dental hard tissues. J Dent Res 43:873–873

    Google Scholar 

  3. Hsu PJ, Chen JH, Chuang FH, Roan RT (2006) The combined occluding effects of fluoride-containing dentin desensitizer and Nd–Yag laser irradiation on human dentinal tubules: an in vitro study. Kaohsiung J Med Sci 22:24–29

    Article  PubMed  CAS  Google Scholar 

  4. Porto ICCM, Andrade AKM, Montes MAJR (2009) Diagnosis and treatment of dentinal hypersensitivity. J Oral Sci 51:323–332

    Article  PubMed  Google Scholar 

  5. Moriyama EH, Zângaro RA, Villaverde AB, Lobo PD, Munin E, Watanabe IS, Júnior DR, Pacheco MT (2004) Dentin evaluation after Nd:YAG laser irradiation using short and long pulses. J Clin Laser Med Surg 22:43–50

    Article  PubMed  Google Scholar 

  6. Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530

    Article  PubMed  CAS  Google Scholar 

  7. Hibst R, Keller U (1989) Experimental studies of the application of the Er:YAG laser on dental hard substances. Laser Surg Med 9:338–344

    Article  CAS  Google Scholar 

  8. Walsh LJ, Perham S (1991) Enamel fusion using a carbon dioxide laser: a technique for sealing pits and fissures. Clin Prev Dent 13:16–20

    PubMed  CAS  Google Scholar 

  9. Altundasar E, Özçelik B, Cehreli ZC, Matsumoto K (2006) Ultramorphological and histochemical changes after ER, CR:YSGG laser irradiation and two different irrigation regimes. J Endodontics 32:465–468

    Article  Google Scholar 

  10. Mir M, Gutknecht N, Poprawe R, Vanweersch L, Lampert F (2009) Visualising the procedures in the influence of water on the ablation of dental hard tissue with erbium:yttrium-aluminium-garnet and erbium, chromium:yttrium–scandium–gallium–garnet laser pulses. Lasers Med Sci 24(3):365–374

    Article  PubMed  Google Scholar 

  11. Burkes EJ Jr, Hoke J, Gomes E, Wolbarsht M (1992) Wet versus dry enamel ablation by Er:YAG laser. J Prosthet Dent 67:847–851

    Article  PubMed  Google Scholar 

  12. Tsai C-L, Lin Y-T, Huang S-T, Chang H-W (2002) In vitro acid resistance of CO2 and Nd:YAG laser-treated human tooth enamel. Caries Res 36:423–429

    Article  PubMed  CAS  Google Scholar 

  13. Perry MD, Stuart BC, Banks PS, Feit MD, Yvanovsky V, Rubenchik AM (1999) Ultrashort-pulse laser machining of dielectric materials. J Appl Phys 85:6803–6810

    Article  CAS  Google Scholar 

  14. Neev J, Da Silva LB, Feit MD, Perry MD, Rubenchik AM, Stuart BC (1996) Ultrashort pulse lasers for hard tissue ablation. IEEE J Sel Top Quant Electron 2(4):790–800

    Article  CAS  Google Scholar 

  15. Rode AV, Gamaly EG, Luther-Davis B, Taylor BT, Dawes J, Chan A, Lowe RM, Hannaford P (2002) Subpicosecond laser ablation of dental enamel. J Appl Phys 92(4):2153–2158

    Article  CAS  Google Scholar 

  16. Dumitru G, Romano V, Weber HP, Sentis M, Marine W (2002) Femtosecond ablation of ultrahard materials. Appl Phys A 74(6):729–739

    Article  CAS  Google Scholar 

  17. Dong Y, Molian P (2003) Femtosecond pulsed laser ablation of 3C–SiC thin film on silicon. Appl Phys A 77:839–846

    Article  CAS  Google Scholar 

  18. Liu JM (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7(5):196–198

    Article  PubMed  CAS  Google Scholar 

  19. Dutra-Correa M, Rodrigues JR, Moriyama LT, Lizarelli RFZ, Bagnato VS (2005) Avaliação das Propriedades Térmicas. Químicas e Mecânicas Comparando Dente Bovino e Dente Humano. Braz Oral Res 19:184

    Google Scholar 

  20. Dutra-Correa M, Rodrigues JR, Nicolodelli G, Kurachi C, Bagnato VS (2010) Femtosecond LASER ablation of bovine and human hard dental tissues: comparative morphological and physicochemical analysis. J Bras Laser 2:25–32

    Google Scholar 

  21. Lizarelli RFZ, Kurachi C, Misoguti L, Bagnato VS (1999) Characterization of enamel and dentin response to Nd:YAG picosecond laser ablation. J Clin Laser Med Surg 17(3):127–131

    PubMed  CAS  Google Scholar 

  22. Niemz MH (2003) In: Niemz MH (ed) Laser tissue interactions: fundamentals and applications. Springer, New York, p 328

    Google Scholar 

  23. Niemz MH (1995) Theshold dependance of laser-induced optical breakdown on pulse duration. Appl Phys Lett 66:1181–1183

    Article  CAS  Google Scholar 

  24. Lossel FH, Niemz MH, Bille JF, Juhasz T (1996) Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model. IEEE J Quantum Electron 32(10):1717–1722

    Article  Google Scholar 

  25. Holcomb DW, Young RA (1980) Thermal decomposition of human tooth enamel. Calcif Tissue Int 31:189–201

    Article  PubMed  CAS  Google Scholar 

  26. Little MF, Casciani FS (1966) The nature of water in sound human enamel: a preliminary study. Arch Oral Biol 11(6):565–571

    Article  PubMed  CAS  Google Scholar 

  27. LeGeros RZ, Bonel G, Legros R (1978) Types of H2O in human enamel and in precipitated apatites. Calcif Tissue Int 26:111–118

    Article  CAS  Google Scholar 

  28. Ladieu F, Martin Ph, Guizard S (2002) Measuring thermal effects in femtosecond laser-induced breakdown of dielectrics. Appl Phys Lett 81(6):957–959

    Article  CAS  Google Scholar 

  29. Dry ME, Beebe RA (1960) Adsorption studies on bone mineral and synthetic hydroxyapatite. J Phys Chem B 64(9):1300–1304

    Article  CAS  Google Scholar 

  30. Baratieri LN, Baratieri LN (2001) Odontologia Restauradora: fundamentos e possibilidades. Santos, São Paulo, p 740

    Google Scholar 

  31. Katchburian E, Arana-Chavez VE (1999) In: Katchburian E, Arana-Chavez VE (eds) Histologia e embriologia oral. Médica Panamericana, São Paulo, p 381

    Google Scholar 

  32. Bachmann L, Zezell DM (2005) Estrutura e Composição do Esmalte e da Dentina: tratamento térmico e irradiação Laser. Livraria da Física, São Paulo, p 298

    Google Scholar 

  33. Krüger J, Kautek W, Newesely H (1999) Femtosecond-pulse laser ablation of dental hydroxyapatite and single-crystalline fluoroapatite. Appl Phys A 69:403–407

    Article  Google Scholar 

  34. Paghdiwala AF (1991) Does the laser work on hard dental tissue? J Am Dent Assoc 122:79–80

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Brazilian funding agencies CAPES, CNPq, FAPESP, and FAPEAL for the financial support of this work. The research of F.G. Rego-Filho and G. Nicolodelli are supported by graduate studentships from CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco de Assis M. G. Rego Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rego Filho, F.A.M.G., Dutra-Corrêa, M., Nicolodelli, G. et al. Influence of the hydration state on the ultrashort laser ablation of dental hard tissues. Lasers Med Sci 28, 215–222 (2013). https://doi.org/10.1007/s10103-012-1118-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1118-z

Keywords

Navigation