Skip to main content

Advertisement

Log in

In vitro toxicity of photodynamic antimicrobial chemotherapy on human keratinocytes proliferation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This in vitro experimental study has been designed to assess the effects of photodynamic antimicrobial chemotherapy (PACT) on human keratinocytes proliferation. Human keratinocytes (HaCaT) monolayers (∼0.5 cm2) have been irradiated with 635 nm red laser light with a fluence of 82.5 or 112.5 J/cm2 in the absence or presence of toluidine (TB). Cell proliferation, monolayer area coverage, cytokeratin 5 (K5) and filaggrin (Fil) expression, and metalloproteinase (MMP)-2 and MMP-9 activity were measured after 72 h from laser irradiation. HaCaT proliferation was reduced by TB staining. Cell exposure to both low- and high-fluence laser irradiation in both presence and absence of TB staining reduced their proliferation and monolayer area extension. Moreover both laser treatments were able to reduce K5 and Fil expression and MMP-9 production in keratinocytes not treated with TB. These data indicate that PACT could exert toxic effects on normal proliferating keratinocytes present around parodontal pockets. The observed reduced cell proliferation along with a reduced production of enzymes involved in wound healing could alter the clinical outcome of the patients treated with PACT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Konopka K, Goslinski T (2007) Photodynamic therapy in dentistry. J Dent Res 86:694–707

    Article  PubMed  CAS  Google Scholar 

  2. Lin J, Bi LJ, Zhang ZG, Fu YM, Dong TT (2010) Toluidine blue-mediated photodynamic therapy of oral wound infections in rats. Lasers Med Sci 25:233–238

    Article  PubMed  CAS  Google Scholar 

  3. Maisch T (2007) Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci 22:83–91

    Article  PubMed  Google Scholar 

  4. Jin JY, Lee SH, Yoon HJ (2010) A comparative study of wound healing following incision with a scalpel, diode laser or Er, Cr:YSGG laser in guinea pig oral mucosa: an histological and immunohistochemical analysis. Acta Odontol Scand 68:232–238

    Article  PubMed  CAS  Google Scholar 

  5. Gracco A, Tracey S, Lombardo L, Siciliani G (2011) Soft tissue laser in orthodontics. Prog Orthod 12:66–72

    Article  PubMed  Google Scholar 

  6. Moritz A, Gutknecht N, Doertbudak O, Goharkhay K, Schoop U, Schauer P, Sperr W (1997) Bacterial reduction in periodontal pockets through irradiation with a diode laser: a pilot study. J Clin Laser Med Surg 15:33–37

    PubMed  CAS  Google Scholar 

  7. Moritz A, Schoop U, Goharkhay K, Schauer P, Doertbudak O, Wernisch J, Sperr W (1998) Treatment of periodontal pockets with a diode laser. Lasers Surg Med 22:302–311

    Article  PubMed  CAS  Google Scholar 

  8. Piosten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–340

    Article  Google Scholar 

  9. Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36:8–12

    Article  PubMed  Google Scholar 

  10. Evans DH, Abrahamse H (2008) Efficacy of three different laser wavelengths for in vitro wound healing. Photodermatol Photoimmunol Photomed 24:199–210

    Article  PubMed  Google Scholar 

  11. Missmann M, Jank S, Laimer K, Gassner R (2006) A reason for the use of toluidine blue staining in the presurgical management of patients with oral squamous cell carcinomas. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:741–743

    Article  PubMed  Google Scholar 

  12. Wysocki GP (1999) Reply to the editor Dr Carl Allen. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87:527–528

    Article  PubMed  CAS  Google Scholar 

  13. Theodoro LH, Silva SP, Pires JR, Soares GH, Pontes AE, Zuza EP, Spolidório DM, de Toledo BE, Garcia VG (2012) Clinical and microbiological effects of photodynamic therapy associated with nonsurgical periodontal treatment. A 6-month follow up. Lasers Med Sci. doi:10.1007/s10103-011-0942-x

  14. Xu Y, Young MJ, Battaglino RA, Morse RL, Fontana CR, Pagonis TC, Kent R, Soukos NS (2009) Endodontic antimicrobial photodynamic therapy: safety assessment in mammalian cell cultures. J Endod 35:1567–1572

    Article  PubMed  Google Scholar 

  15. Presland RB, Dale BA (2000) Epithelial structural proteins of the skin and oral cavity: function in health and disease. Crit Rev Oral Biol Med 11:383–408

    Article  PubMed  CAS  Google Scholar 

  16. Mäkelä M, Larjava H, Pirilä E, Maisi P, Salo T, Sorsa T, Uitto VJ (1999) Matrix metalloproteinase 2 (gelatinase A) is related to migration of keratinocytes. Exp Cell Res 251:67–78

    Article  PubMed  Google Scholar 

  17. Salo T, Mäkelä M, Kylmäniemi M, Autio-Harmainen H, Larjava H (1994) Expression of matrix metalloproteinase-2 and -9 during early human wound healing. Lab Invest 70:176–182

    PubMed  CAS  Google Scholar 

  18. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  PubMed  CAS  Google Scholar 

  19. Qin Y, Luan X, Bi L, He G, Bai XF, Zhou C, Zhang Z (2008) Toluidine blue-mediated photoinactivation of periodontal pathogens from supragingival plaques. Lasers Med Sci 23:49–54

    Article  PubMed  Google Scholar 

  20. Ketabchi A, MacRobert A, Speight PM, Bennett JH (1998) Induction of apoptotic cell death by photodynamic therapy in human keratinocytes. Arch Oral Biol 43:143–149

    Article  PubMed  CAS  Google Scholar 

  21. Luan XL, Qin YL, Bi LJ, Hu CY, Zhang ZG, Lin J, Zhou CN (2009) Histological evaluation of the safety of toluidine blue-mediated photosensitization to periodontal tissues in mice. Lasers Med Sci 24:162–166

    Article  PubMed  CAS  Google Scholar 

  22. Balabanova M, Popova L, Tchipeva R (2003) Dyes in dermatology. Clin Dermatol 21:2–6

    Article  PubMed  Google Scholar 

  23. Soukos NS, Wilson M, Burns T, Speight PM (1996) Photodynamic effects of toluidine blue on human oral keratinocytes and fibroblasts and Streptococcus sanguis evaluated in vitro. Lasers Surg Med 18:253–259

    Article  PubMed  CAS  Google Scholar 

  24. Wu S, Xing D, Gao X, Chen WR (2009) High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species. J Cell Physiol 218:603–611

    Article  PubMed  CAS  Google Scholar 

  25. Lubart R, Eichler M, Lavi R, Friedman H, Shainberg A (2005) Low-energy laser irradiation promotes cellular redox activity. Photomed Laser Surg 23:3–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Renò.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migliario, M., Rizzi, M., Rocchetti, V. et al. In vitro toxicity of photodynamic antimicrobial chemotherapy on human keratinocytes proliferation. Lasers Med Sci 28, 565–569 (2013). https://doi.org/10.1007/s10103-012-1112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1112-5

Keywords

Navigation