Skip to main content

Advertisement

Log in

Low-intensity infrared laser increases plasma proteins and induces oxidative stress in vitro

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-intensity laser therapy is based on the excitation of endogenous chromophores in biotissues and free-radical generation could be involved in its biological effects. In this work, the effects of the low-intensity infrared laser on plasma protein content and oxidative stress in blood from Wistar rats were studied. Blood samples from Wistar rats were exposed to low-intensity infrared laser in continuous wave and pulsed-emission modes at different fluencies. Plasma protein content and two oxidative stress markers (thiobarbituric acid-reactive species formation and myeloperoxidase activity) were carried out to assess the effects of laser irradiation on blood samples. Low-intensity infrared laser exposure increases plasma protein content, induces lipid peroxidation, and increases myeloperoxidase activity in a dose- and frequency-dependent way in blood samples. The low-intensity infrared laser increases plasma protein content and oxidative stress in blood samples, suggesting that laser therapy protocols should take into account fluencies, frequencies, and wavelengths of the laser before beginning treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Niemz MH (2007) Laser–tissue interactions: fundamentals and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Arisu HD, Türköz E, Bala O (2006) Effects of Nd:YAG laser irradiation on osteoblast cell cultures. Lasers Med Sci 21:175–180

    Article  PubMed  Google Scholar 

  3. Chellini F, Sassoli C, Nosi D, Deledda C, Tonelli P, Zecchi-Orlandini S, Formigli L, Giannelli M (2010) Low pulse energy Nd:YAG laser irradiation exerts a biostimulative effect on different cells of the oral microenvironment: “an in vitro study”. Lasers Surg Med 42:527–539

    Article  PubMed  Google Scholar 

  4. Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374(9705):1897–1908

    Article  PubMed  Google Scholar 

  5. Lagan KM, Clements BA, McDonough S, Baxter GD (2001) Low-intensity laser therapy (830 nm) in the management of minor post surgical wounds: a controlled clinical study. Lasers Surg Med 28:27–32

    Article  PubMed  CAS  Google Scholar 

  6. Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4

    Article  PubMed  Google Scholar 

  7. Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models. Photomed Laser Surg 28:291–325

    Article  PubMed  Google Scholar 

  8. Korochkin IM, Kapustina GM, Babenko EV, Zhuravleva NIu (1990) Helium-neon laser therapy in multimodal treatment of acute pneumonia. Sov Med 3:12–15

    PubMed  Google Scholar 

  9. Kipshidze NN, Khomeriki SG, Kubatiev AA, Korochkin IM, Denisov SM, Shliapnikov VN (1992) Lecitin-induced chemiluminescence of peripheral blood neutrophils in patients with ischemic heart disease before and after blood irradiation with helium-neon laser. Kardiologiia 32:53–56

    PubMed  CAS  Google Scholar 

  10. Prokopova LV, Losev AA, Ursol IuI (1992) Effect of intravascular laser therapy on rheologic properties of blood in children with bilateral destructive pneumonia. Klin Khir 6:7–9

    PubMed  Google Scholar 

  11. Ghadage V, Kulkarni GR (2010) Effects of Nd:YAG laser irradiation on human erythrocytes in vitro. Int J Integr Biol 9:149–151

    Google Scholar 

  12. Genkin VM, Novikov VF, Paramonov LV, El’kina BI (1989) Effects of low-intensity laser irradiation on the state of blood proteins. Biull Eksp Biol Med 108:188–190

    Article  PubMed  CAS  Google Scholar 

  13. Siposan DG, Lukacs A (2001) Relative variation to received dose of some erythrocytic and leukocytic indices of human blood as a result of low-level laser radiation: an in vitro study. J Clin Laser Med Surg 19:89–103

    Article  PubMed  CAS  Google Scholar 

  14. Mi XQ, Chen JY, Liang ZJ, Zhou LW (2004) In vitro effects of helium-neon laser irradiation on human blood: blood viscosity and deformability of erythrocytes. Photomed Laser Surg 22:477–482

    Article  PubMed  Google Scholar 

  15. Cui Y, Guo Z, Zhao Y, Zheng Y, Qiao Y, Cai J, Liu S (2007) Reactive effect of low-intensity He-Ne laser upon damaged ultrastructure of human erythrocyte membrane in Fenton system by atomic force microscopy. Acta Biochim Biophys Sin (Shanghai) 39:484–489

    Article  Google Scholar 

  16. Brill AG, Shenkman B, Brill GE, Tamarin I, Dardik R, Kirichuk VF, Savion N, Varon D (2000) Blood irradiation by He-Ne laser induces a decrease in platelet responses to physiological agonists and an increase in platelet cyclic GMP. Platelets 11:87–93

    Article  PubMed  CAS  Google Scholar 

  17. Kujawa J, Zavodnik L, Zavodnik I, Buko V, Lapshyna A, Bryszewska M (2004) Effect of low-intensity (3.75-25 J/cm2) near-infrared (810 nm) laser radiation on red blood cell ATPase activities and membrane structure. J Clin Laser Med Surg 22:111–117

    Article  PubMed  Google Scholar 

  18. Kim YG (2002) Laser-mediated production of reactive oxygen and nitrogen species; implications for therapy. Free Rad Res 36:1243–1250

    Article  CAS  Google Scholar 

  19. Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R (1998) 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med 22:212–218

    Article  PubMed  CAS  Google Scholar 

  20. Peng TI, Jou MJ (2004) Mitochondrial swelling and generation of reactive oxygen species induced by photoirradiation are heterogeneously distributed. Ann NY Acad Sci 1011:112–122

    Article  PubMed  CAS  Google Scholar 

  21. Mohanty SK, Sharma M, Gupta PK (2006) Generation of ROS in cells on exposure to CW and pulsed near-infrared laser tweezers. Photochem Photobiol Sci 5:134–139

    Article  PubMed  CAS  Google Scholar 

  22. Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2004) Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 4:559–567

    Article  PubMed  CAS  Google Scholar 

  23. Karu TI, Pyatibrat LV, Afanasyeva NI (2005) Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med 36:307–314

    Article  PubMed  Google Scholar 

  24. Hu W-P, Wang J-J, Yu C-L, Lan C-CE, Chen G-S, Yu H-S (2007) Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Investigat Dermatol 127:2048–2057

    Article  CAS  Google Scholar 

  25. Tafur J, Mills PJ (2008) Low-intensity light therapy: exploring the role of redox mechanisms. Photomed Laser Surg 26:321–326

    Article  Google Scholar 

  26. Maiya GA, Kumar P, Rao L (2005) Effect of low-intensity helium-neon (He-Ne) laser irradiation on diabetic wound healing dynamics. Photomed Laser Surg 23:187–190

    Article  PubMed  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  28. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Meth Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  29. Cigremis Y, Turkoz Y, Tuzcu M, Ozen H, Kart A, Gaffaroglu M, Erdogan K, Akgoz M, Ozugurlu F (2006) The effects of chronic exposure to ethanol and cigarette smoke on the formation of peroxynitrite, level of nitric oxide, xanthine oxidase and myeloperoxidase activities in rat kidney. Mol Cell Biochem 291:127–138

    Article  PubMed  CAS  Google Scholar 

  30. Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI (2008) Absorption measurements of cell monolayers relevant to mechanisms of laser phototherapy: reduction or oxidation of cytochrome c oxidase under laser radiation at 632.8 nm. Photomed Laser Surg 26:593–599

    Article  PubMed  Google Scholar 

  31. Safavi SM, Kazemi B, Esmaeili M, Fallah A, Modarresi A, Mir M (2008) Effects of low-level He-Ne laser irradiation on the gene expression of IL-1beta, TNF-alpha, IFN-gamma, TGF-beta, bFGF, and PDGF in rat’s gingiva. Lasers Med Sci 23:331–335

    Article  PubMed  Google Scholar 

  32. Shimizu N, Mayahara K, Kiyosaki T, Yamaguchi A, Ozawa Y, Abiko Y (2007) Low-intensity laser irradiation stimulates bone nodule formation via insulin-like growth factor-I expression in rat calvarial cells. Lasers Surg Med 39:551–559

    Article  PubMed  Google Scholar 

  33. Mi XQ, Chen JY, Zhou LW (2006) Effect of low-power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane. J Photochem Photobiol B 83:146–150

    Article  PubMed  CAS  Google Scholar 

  34. Fischer F, Aulmann M, Maier-Borst W, Lorenz WJ (1998) Blood cell damage after in vitro irradiation of fresh whole blood with 630-nm laser light. Blood Cel Mol Dis 30:385–395

    Article  Google Scholar 

  35. Takahashi M, Ito A, Kajihara T, Matsuo H, Arai T (2010) Basic study of charring detection at the laser catheter-tip using back scattering light measurement during therapeutic laser irradiation in blood. 32nd Annual International Conference IEEE EMBS, Buenos Aires, pp 2759–2761

  36. Olban M, Wachowicz B, Koter M, Bryszewska M (1998) The biostimulatory effect of red laser irradiation on pig blood platelet function. Cell Biol Int 22:245–248

    Article  PubMed  CAS  Google Scholar 

  37. Teixeira KC, Soares FS, Rocha LGC, Silveira PCL, Silva LA, Valença SS, Dal Pizzol F, Streck EL, Pinho RA (2008) Attenuation of bleomycin-induced lung injury and oxidative stress by N-acetylcysteine plus deferoxamine. Pul Pharmacol Ther 21:309–316

    Article  CAS  Google Scholar 

  38. Fonseca AS, Moreira TO, Paixão DL, Farias FM, Guimarães OR, Paoli S, Geller M, Paoli F (2010) Effect of laser therapy on DNA damage. Lasers Surg Med 42:481–488

    Article  PubMed  Google Scholar 

  39. Stadler I, Evans R, Kolb B, Naim JO, Narayan V, Buehner N, Lanzafame RJ (2000) In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med 27:255–261

    Article  PubMed  CAS  Google Scholar 

  40. Tirlapur UK, Konig K, Peuckert C, Krieg R, Halbhuber K (2001) Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death. Exp Cell Res 263:88–97

    Article  PubMed  CAS  Google Scholar 

  41. Avni D, Levkovitz S, Maltz L, Oron U (2005) Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg 23:273–277

    Article  PubMed  CAS  Google Scholar 

  42. Medrado AP, Soares AP, Santos ET, Reis SR, Andrade ZA (2008) Influence of laser photobiomodulation upon connective tissue remodeling during wound healing. J Photochem Photobiol B 92:144–152

    Article  PubMed  CAS  Google Scholar 

  43. Aimbire F, Albertini R, Pacheco MT, Castro-Faria-Neto HC, Leonardo PS, Iversen VV, Lopes-Martins RA, Bjordal JM (2006) Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomed Laser Surg 24:33–37

    Article  PubMed  CAS  Google Scholar 

  44. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17

    Article  PubMed  CAS  Google Scholar 

  45. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    Article  PubMed  CAS  Google Scholar 

  46. Hoy A, Leininger-Muller B, Kutter D, Siest G, Visvikis S (2002) Growing significance of myeloperoxidase in non-infectious diseases. Clin Chem Lab Med 40:2–8

    Article  PubMed  CAS  Google Scholar 

  47. Deby-Dupont G, Deby C, Lamy M (1999) Neutrophil myeloperoxidase revisited: its role in health and disease. Intensivmed Notfallmed 36:500–513

    Article  Google Scholar 

  48. Rueff-Barroso CR, Trajano ETL, Alves JN, Paiva RO, Lanzetti M, Pires KMP, Bezerra FS, Pinho RA, Valença SS, Porto LC (2010) Organ-related cigarette smoke-induced oxidative stress is strain-dependent. Med Sci Monit 16:BR218–BR226

    PubMed  CAS  Google Scholar 

  49. Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099

    Article  PubMed  CAS  Google Scholar 

  50. Alexandratou E, Yova D, Handris P, Kletsas D, Loukas S (2002) Human fibroblast alterations induced by low-power laser: irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci 1:547–552

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adenilson de Souza da Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza da Fonseca, A., Presta, G.A., Geller, M. et al. Low-intensity infrared laser increases plasma proteins and induces oxidative stress in vitro. Lasers Med Sci 27, 211–217 (2012). https://doi.org/10.1007/s10103-011-0945-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-0945-7

Keywords

Navigation