Skip to main content

Advertisement

Log in

Influence of laser (660 nm) on functional recovery of the sciatic nerve in rats following crushing lesion

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

With the aim of accelerating the regenerative processes, the objective was to study the influence of gallium–aluminum–arsenide (GaAlAs) laser (660 nm) on functional and histomorphological recovery of the sciatic nerve in rats. The sciatic nerves of 12 Wistar rats were crushed divided into two groups: control and laser therapy. For the latter, GaAlAs laser was utilized (660 nm, 4 J/cm2, 26.3 mW and 0.63 cm2 beam), at three equidistant points on the lesion, for 20 days. Comparison of the sciatic functional index (SFI) showed that there was a significant difference only between the pre-lesion value of the laser therapy group and that after the 21st day in the control group. It was concluded that the parameters and methods utilized demonstrated positive results regarding the SFI over the time period evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rochkind S, Quaknine GE (1992) New trend in neuroscience: low-power laser effect on peripheral and central nervous system (basic science, preclinical and clinical studies). Neurol Res 14:2–11

    CAS  PubMed  Google Scholar 

  2. Rodrígues FJ, Valero-Cabré A, Navarro X (2004) Regeneration and functional recovery following peripheral nerve injury. Drug Discov Today Dis Models 1:177–185. doi:10.1016/j.ddmod.2004.09.008

    Article  Google Scholar 

  3. Noble J, Munro CA, Prasad VSSV (1998) Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 45:116–122. doi:10.1097/00005373-199807000-00025

    Article  CAS  PubMed  Google Scholar 

  4. Mendonça AC, Barbieri CH, Mazzer N (2003) Directly applied low intensity direct electric current enhances peripheral nerve regeneration in rats. J Neurosci Methods 129:183–190. doi:10.1016/S0165-0270(03)00207-3

    Article  PubMed  Google Scholar 

  5. Raso VVM, Barbieri CH, Mazzer N, Fasan VS (2005) Can therapeutic ultrasound influence the regeneration of the peripheral nerves? J Neurosci Methods 142:185–192. doi:10.1016/j.jneumeth.2004.08.016

    Article  PubMed  Google Scholar 

  6. Inserra MM, Bloch DA, Terris DJ (1998) Functional indices for sciatic, peronal, and posterior tibial nerve lesions in the mouse. Microsurgery 18:119–124 doi:10.1002/(SICI)1098-2752(1998)18:2<119::AID-MICR10>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  7. Rochkind S, Nissan M, Alon M, Shamir M, Salame K (2001) Effects of laser irradiation on the spinal cord for the regeneration of crushed peripheral nerve in rats. Lasers Surg Med 28:216–219. doi:10.1002/lsm.1041

    Article  CAS  PubMed  Google Scholar 

  8. Oliveira LS, Sobral LL, Takeda SY, Betini J, Guirro RR, Somazz MC, Teodori RM (2008) Electrical stimulation and swimming in the acute phase of axonotmesis: their influence on nerve regeneration and functional recovery. Rev Neurol 47:11–15

    CAS  PubMed  Google Scholar 

  9. Basford JR (1995) Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 16:331–342. doi:10.1002/lsm.1900160404

    Article  CAS  PubMed  Google Scholar 

  10. Gigo-Benato D, Geuna S, Rochkind S (2005) Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve 31:694–701. doi:10.1002/mus.20305

    Article  PubMed  Google Scholar 

  11. Kozhakhmetov AN (1993) The evaluation of the adequacy of anesthesia during delivery (in Russian). Akush Ginekol (Mosk) 2:36–39

    Google Scholar 

  12. Almeida EMP, Nunes N, Fantinatti AP, Santos PSP, Bolzan AA, Rezende ML (2000) Efeitos cardiorrespiratórios da associação de tiletamina/zolazepam em cães (Canis familiaris) pré-tratados ou não pela acepromazina. Braz J Vet Anim Sci 37:45–51

    Google Scholar 

  13. Privado MS, Sakata RK, Issy AM (2004) Estudo comparativo entre fentanil por vias peridural e venosa para analgesia de operações ortopédicas. Rev Bras Anestesiol 54:634–639. doi:10.1590/S0034-70942004000500003

    Article  PubMed  Google Scholar 

  14. Dijkstra JR, Meek MF, Robinson PH, Gramsbergen A (2000) Methods to evaluate functional nerve recovery in adult rats: walking track analysis, video analysis and the withdrawal reflex. J Neurosci Methods 96:89–96. doi:10.1016/S0165-0270(99)00174-0

    Article  CAS  PubMed  Google Scholar 

  15. Beau JML, Ellisman MH, Powell HC (1988) Ultrastructural and morphometric analysis of long-term peripheral nerve regeneration through silicone tubes. J Neurocytol 17:161–172. doi:10.1007/BF01674203

    Article  PubMed  Google Scholar 

  16. Dahlin LB (2004) The biology of nerve injury and repair. J Am Soc Surg Hand 4:143–155. doi:10.1016/j.jassh.2004.06.006

    Article  Google Scholar 

  17. Johnson EO, Zoubos AB, Soucacos PN (2005) Regeneration and repair of peripheral nerves. Injury 36:S24–S29. doi:10.1016/j.injury.2005.10.012

    Article  PubMed  Google Scholar 

  18. Lent R (2004) Cem bilhões de neurônios: conceitos fundamentais da neurociência, 3rd edn. Atheneu, São Paulo, p 135

    Google Scholar 

  19. Rochkind S, Nissan M, Lubart R, Avram J, Bartal A (1988) The in-vivo nerve response to direct low-energy-laser irradiation. Acta Neurochir (Wien) 94:74–77. doi:10.1007/BF01406620

    Article  CAS  Google Scholar 

  20. Rochkind S, Vogler I, Barr-Nea L (1990) Spinal cord response to laser treatment of injured peripheral nerve. Spine 15:6–10. doi:10.1097/00007632-199001000-00003

    Article  CAS  PubMed  Google Scholar 

  21. Anders JJ, Borke RC, Woolery SK, Merwe WPV (1993) Low power laser irradiation alters the rate of regeneration of the facial nerve. Lasers Surg Med 13:72–182. doi:10.1002/lsm.1900130113

    Article  CAS  PubMed  Google Scholar 

  22. Khullar SM, Brodin P, Messelt EB, Haanaes HR (1995) The effects of low level laser treatment on recovery of nerve conduction and motor function after compression injury in the rat sciatic nerve. Eur J Oral Sci 103:299–305. doi:10.1111/j.1600-0722.1995.tb00030.x

    Article  CAS  PubMed  Google Scholar 

  23. Bagis S, Comelekoglu U, Sahin G, Buyukakilli B, Erdogan C, Kanik A (2002) Acute electrophysiologic effect of pulsed gallium-arsenide low energy laser irradiation on configuration of compound nerve action potential and nerve excitability. Lasers Surg Med 30:376–380. doi:10.1002/lsm.10057

    Article  PubMed  Google Scholar 

  24. Shin DH, Lee E, Hyun J, Lee SJ, Chang YP, Kim J, Choi YS, Kwon BS (2003) Growth-associated protein-43 is elevated in the injured rat sciatic nerve after low power irradiation. Neurosci Lett 344:71–74. doi:10.1016/S0304-3940(03)00354-9

    Article  CAS  PubMed  Google Scholar 

  25. Rochkind S, Nissan M, Razon N, Schwartz M, Bartal A (1986) Electrophysiological effect of HeNe laser on normal and injured sciatic nerve in the rat. Acta Neurochir (Wien) 83:125–130. doi:10.1007/BF01402391

    Article  CAS  Google Scholar 

  26. Sotelo PR, Sosa VMR, Martínez RT, Barry HG (1996) El laser helio-neon en la regeneración del nervio ciático seccionado y suturado. Rev Cubana Cir 35:00

    CAS  Google Scholar 

  27. Schwartz F, Brodie C, Appel E, Kazimirsky G, Shainberg A (2002) Effect of helium/neon laser irradiation on nerve growth factor synthesis and secretion in skeletal muscle cultures. J Photochem Photobiol B 66:195–200. doi:10.1016/S1011-1344(02)00267-1

    Article  CAS  PubMed  Google Scholar 

  28. Snyder SK, Byrnes KR, Borke RC, Sanches A, Anders JJ (2002) Quantitation of calcitonin gene-related peptide mRNA and neuronal cell death in facial motor nuclei following axotomy and 633 nm low power laser. Lasers Surg Med 31:216–222. doi:10.1002/lsm.10098

    Article  PubMed  Google Scholar 

  29. Khullar SM, Brodin P, Fristad I, Kvinnsland IH (1999) Enhanced sensory reinnervation of dental target tissues in rats following low level laser (LLL) irradiation. Lasers Med Sci 14:177–184. doi:10.1007/s101030050082

    Article  Google Scholar 

  30. Walsh DM, Baxter GD, Allen JM (2000) Lack of effect of pulsed low-intensity infrared (820 nm) laser irradiation on nerve conduction in the human superficial radial nerve. Lasers Surg Med 26:485–490 doi:10.1002/1096-9101(2000)26:5<485::AID-LSM8>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  31. Shamir MH, Rochkind S, Sandbank J, Alon M (2001) Double-blind randomized study evaluating regeneration of the rat transected sciatic nerve after suturing and postoperative low-power laser treatment. J Reconstr Microsurg 17:133–137. doi:10.1055/s-2001-12702

    Article  CAS  PubMed  Google Scholar 

  32. Miloro M, Halkias LE, Mallery S, Travers S, Rashid RG, Neb O (2002) Low-level laser effect on neural regeneration in Gore-Tex tubes. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93:27–34. doi:10.1067/moe.2002.119518

    Article  PubMed  Google Scholar 

  33. Gigo-Benato D, Geuna S, Rodrigues AC, Fornaro PTM, Boux E, Battiston B, Giacobini-Robecchi MG (2004) Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: a double-blind randomized study in the rat median nerve model. Lasers Med Sci 19:57–65. doi:10.1007/s10103-004-0300-3

    Article  CAS  PubMed  Google Scholar 

  34. Nicolau RA, Martinez MS, Rigau J, Tomàs J (2004) Effect of power 655 nm diode laser irradiation on the neuromuscular junctions of the mouse diaphragm. Lasers Surg Med 34:277−284. doi:10.1002/lsm.20006

    Article  PubMed  Google Scholar 

  35. Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H, Anders JJ (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36:171−185. doi:10.1002/lsm.20143

    Article  PubMed  Google Scholar 

  36. Bagis S, Comelekoglu U, Coskun B, Milcan A, Buyukakilli B, Sahin G, Ozisik S, Erdogan C (2003) No effect of GA-AS (904 nm) laser irradiation on the intact skin of the injured rat sciatic nerve. Lasers Med Sci 18:83–88. doi:10.1007/s10103-003-0258-6

    Article  CAS  PubMed  Google Scholar 

  37. Rochkind S, Barr-Nea L, Bartal A, Nissan M, Lubart R, Razon N (1988) New methods of treatment of severely injured sciatic nerve and spinal cord: an experimental study. Acta Neurochir (Wien) 43:91–93 b

    CAS  Google Scholar 

  38. Chelyshev IA, Kubitskii AA, Plakseichuk A (1996) Regeneratsiia nervnykh volokon pri obluchenii nizkointensivnymi lazerami. Morfologiia 110:47–50

    PubMed  Google Scholar 

  39. Bervar M (2000) Video analysis of standing—an alternative footprint analysis to assess functional loss following injury to the rat sciatic nerve. J Neurosci Methods 102:109–116. doi:10.1016/S0165-0270(00)00281-8

    Article  CAS  PubMed  Google Scholar 

  40. Koka R, Hadlock TA (2001) Quantification of functional recovery following rat sciatic nerve transaction. Exp Neurol 168:192–195. doi:10.1006/exnr.2000.7600

    Article  CAS  PubMed  Google Scholar 

  41. Varejão ASP, Cabrita AM, Geuna S, Melo-Pinto P, Filipe VM, Gramsbergen A, Meek MF (2003) Toe out angle: a functional index for the evaluation of the sciatic nerve recovery in the rat model. Exp Neurol 183:695–699. doi:10.1016/S0014-4886(03)00208-5

    Article  PubMed  Google Scholar 

  42. Lubiatowski P, Unsal FM, Nair D, Ozer K, Siemionow M (2008) The epineural sleeve technique for nerve graft reconstruction enhances nerve recovery. Microsurgery 28:160–167. doi:10.1002/micr.20472

    Article  PubMed  Google Scholar 

  43. Monte-Raso VV, Barbieri CH, Mazzer N, Yamasita AC, Barbieri G (2008) Is the sciatic functional index always reliable and reproducible? J Neurosci Methods 170:255–261. doi:10.1016/j.jneumeth.2008.01.022

    Article  PubMed  Google Scholar 

  44. Karu TI (1988) Molecular mechanisms of the therapeutic effect of low-intensity laser irradiation. Lasers Life Sci 2:53–74

    Google Scholar 

  45. Manteifel VM, Karu TI (2005) Structure of mitochondria and activity of their respiratory chain in successive generations of yeast cells exposed to He-Ne laser light. Izv Akad Nauk Ser Biol 32:556–566

    CAS  Google Scholar 

  46. Rummler LS, Paul TD, Gupta R (2004) The anatomy and biochemistry of myelin and myelination. Oper Tech Orthop 14:146–152. doi:10.1053/j.oto.2004.06.005

    Article  Google Scholar 

  47. Klebanov GI, Kreinina MV, Poltanov EA, Khristoforova TV, Vladimirov YA (2001) Mechanism of therapeutics effect of low-intensity infrared laser irradiation. Bull Exp Biol Med 131:239–241. doi:10.1023/A:1017643230376

    Article  CAS  PubMed  Google Scholar 

  48. Woodruff LD, Bounkeo JM, Brannon WM, Dawes KS, Barham CD, Waddell DL, Enwemeka CS (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22:241–247. doi:10.1089/1549541041438623

    Article  PubMed  Google Scholar 

  49. Vladimirov YA, Osipov AN, Klebanov GI (2004) Photobiological principles of therapeutic applications of laser radiation. Biochemistry 69:89–90

    Google Scholar 

  50. Karu TI, Pyatibrat LV, Afanasyeva NI (2004) A novel mitochondrial signaling pathway activated by visible-to-near infrared radiation. Photochem Photobiol 80:366–372. doi:10.1562/2004-03-25-RA-123.1

    Article  CAS  PubMed  Google Scholar 

  51. Ihsan FRM (2005) Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg 23:289–294. doi:10.1089/pho.2005.23.289

    Article  CAS  PubMed  Google Scholar 

  52. Montoya GJV, Ariza J, Sutachán JJ, Hurtado H (2002) Relationship between functional deficiencies and the contribution of myelin nerve fibers derived from L-4, L-5, and L-6 spinolumbar branches in adult rat sciatic nerve. Exp Neurol 173:266–274. doi:10.1006/exnr.2001.7806

    Article  Google Scholar 

  53. de Medinaceli L (1995) Interpreting nerve morphometry data after experimental traumatic lesions. J Neurosci Methods 58:29–37. doi:10.1016/0165-0270(94)00156-B

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo de Tarso Camillo de Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belchior, A.C.G., dos Reis, F.A., Nicolau, R.A. et al. Influence of laser (660 nm) on functional recovery of the sciatic nerve in rats following crushing lesion. Lasers Med Sci 24, 893–899 (2009). https://doi.org/10.1007/s10103-008-0642-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-008-0642-3

Keywords

Navigation