Skip to main content
Log in

Enhancement of light propagation depth in skin: cross-validation of mathematical modeling methods

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Various techniques to enhance light propagation in skin have been studied in low-level laser therapy. In this study, three mathematical modeling methods for five selected techniques were implemented so that we could understand the mechanisms that enhance light propagation in skin. The five techniques included the increasing of the power and diameter of a laser beam, the application of a hyperosmotic chemical agent (HCA), and the whole and partial compression of the skin surface. The photon density profile of the five techniques was solved with three mathematical modeling methods: the finite element method (FEM), the Monte Carlo method (MCM), and the analytic solution method (ASM). We cross-validated the three mathematical modeling results by comparing photon density profiles and analyzing modeling error. The mathematical modeling results verified that the penetration depth of light can be enhanced if incident beam power and diameter, amount of HCA, or whole and partial skin compression is increased. In this study, light with wavelengths of 377 nm, 577 nm, and 633 nm was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tuchin VV (2000) Optical properties of tissues with strong (multiple) scattering. In: O’Shea DC (ed) Tissue optics: light scattering methods and instruments for medical diagnosis. SPIE Press, Bellingham, WA, USA, pp 3–98

    Google Scholar 

  2. Gratton G, Maier JS, Fabiani M, Mantulin WW, Gratton E (1994) Feasibility of intracranial near-infrared optical scanning. Psychophysiology 31:211–215. doi:10.1111/j.1469–8986.1994.tb01043.x

    Article  PubMed  CAS  Google Scholar 

  3. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267. doi:10.1126/science.929199

    Article  PubMed  CAS  Google Scholar 

  4. Tunér J, Hode L (2002) Laser therapy—clinical practice and scientific background. Prima Books, Grängesberg, Sweden

    Google Scholar 

  5. Carroll L, Humphreys TR (2006) LASER-tissue interactions. Clin Dermatol 24:2–7. doi:10.1016/j.clindermatol.2005.10.019

    Article  PubMed  Google Scholar 

  6. Tuchin VV (2002) Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood. Appl Opt 41:258–271. doi:10.1364/AO.41.000258

    Article  PubMed  CAS  Google Scholar 

  7. Tuchin VV (2006) Optical clearing of tissues and blood. SPIE Press, Bellingham, WA, USA

    Google Scholar 

  8. Vargas G, Chan EK, Barton JK, Rylander HG, Welch AJ (1999) Use of an agent to reduce scattering in skin. Lasers Surg Med 24:133–141 doi:10.1002/(SICI)1096–9101(1999)24:2<133::AID-LSM9>3.0.CO;2-X

    Article  PubMed  CAS  Google Scholar 

  9. He Y, Wang RK (2004) Improvement of low-level light imaging performance using optical clearing method. Biosens Bioelectron 20:460–467. doi:10.1016/j.bios.2004.04.013

    Article  PubMed  CAS  Google Scholar 

  10. Khan MH, Choi B, Chess S, Kelly KM, McCullough J, Nelson JS (2004) Optical clearing of in vivo human skin: implications for light-based diagnostic imaging and therapeutics. Lasers Surg Med 34:83–85. doi:10.1002/lsm.20014

    Article  PubMed  Google Scholar 

  11. Tuchin VV (2007) A clear vision for laser diagnostics. IEEE J Sel Top Quantum Electron 13:1621–1628. Review. doi:10.1109/JSTQE.2007.911313

    Article  CAS  Google Scholar 

  12. Chan EK, Sorg B, Protsenko D, O’Neil M, Motamedi M, Welch AJ (1996) Effects of compression on soft tissue optical properties. IEEE J Sel Top Quantum Electron 2:943–950. doi:10.1109/2944.577320

    Article  CAS  Google Scholar 

  13. Shangguan H, Prahl SA, Jacques SL, Casperson LW, Gregory KW (1998) Pressure effects on soft tissues monitored by changes in tissue optical properties. Proc SPIE 3254:366–371. doi:10.1117/12.308187

    Article  Google Scholar 

  14. Arridge SR (1999) Optical tomography in medical imaging. Inverse Probl 15:R41–R93. doi:10.1088/0266–5611/15/2/022

    Article  Google Scholar 

  15. Van Gemert MJC, Jacques SL, Sterenborg HJCM, Star WM (1989) Skin optics. IEEE T Biomed Eng 36:1146–1154

    Article  Google Scholar 

  16. Wang L, Jacques SL, Zheng L (1995) MCML–Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed 47:131–146. doi:10.1016/0169–2607(95)01640-F

    Article  PubMed  CAS  Google Scholar 

  17. Wang L, Jacques SL, Zheng L (1997) CONV—convolution for responses to a finite diameter photon beam incident on multi-layered tissues. Comput Methods Programs Biomed 54:141–150. doi:10.1016/S0169–2607(97)00021–7

    Article  PubMed  CAS  Google Scholar 

  18. Desmettre T, Mordon S (2005) Comparison of laser beam intensity profiles produced by photodynamic therapy (PDT) and transpupillary thermotherapy (TTT) lasers. Lasers Surg Med 36:315–322. doi:10.1002/lsm.20159

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Next Generation New Technology Program provided by the Ministry of Commerce, Industry, and Energy, Republic of Korea (10028424). K. Kwon is supported by grants from the Korea Health 21 R & D Project provided by the Ministry of Health & Welfare, Republic of Korea (02-PJ3-PG6-EV07-0002) and from the Brain Research Center of the 21st Century Frontier Research Program provided by the Ministry of Science and Technology, Republic of Korea (M103KV010019-06K2201-01910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungjo Jung.

Appendix 1

Appendix 1

Nomenclature

Φ:

photon density profile (W/cm2)

q:

light source function (W/cm3)

\(\Re \) :

Robin function, which is the photon density profile with respect to the Dirac delta source (W/cm3)

μ a :

absorption coefficient (cm−1)

μ s :

scattering coefficient (cm−1)

g:

anisotropy factor

\(d,\mu _{s} \prime ,\mu _{a} \) :

reduced scattering coefficient (cm−1) \({\left( {\mu _{s} \prime {\text{ = }}{\left( {1 - g} \right)}\mu _{s} } \right)}\)

κ :

diffusion coefficient (cm) \({\left( {{\kappa = 1} \mathord{\left/ {\vphantom {{\kappa = 1} {{\left( {3{\left( {\mu _{a} + \mu _{s} \prime } \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {3{\left( {\mu _{a} + \mu _{s} \prime } \right)}} \right)}}} \right)}\)

n:

refractive index

a:

reflection coefficient on the surface

c:

speed of light in a vacuum (cm/s) (c = 2.99 × 1010 cm/s)

ω :

angular modulation frequency of the source intensity(1/s)

Ω:

region of interest (skin structure)

∂Ω:

boundary of Ω (∂Ω = ∂topΩ + ∂bottomΩ + ∂leftΩ + ∂rightΩ)

topΩ:

top boundary of Ω

bottomΩ:

bottom boundary of Ω

leftΩ:

left boundary of Ω

rightΩ:

right boundary of Ω

N b :

number of finite element basis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, K., Son, T., Lee, KJ. et al. Enhancement of light propagation depth in skin: cross-validation of mathematical modeling methods. Lasers Med Sci 24, 605–615 (2009). https://doi.org/10.1007/s10103-008-0625-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-008-0625-4

Keywords

Navigation