Skip to main content

Advertisement

Log in

Adhesion after erbium, chromium:yttrium-scandium-gallium-garnet laser application at three different irradiation conditions

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate whether distinct cooling of low fluence erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation would influence adhesion. Main factors tested were: substrates (two), irradiation conditions (three), and adhesives (three). A 750 μm diameter tip was used, for 50 s, 1 mm from the surface, with a 0.25 W power output, 20 Hz, energy density of 2.8 J/cm2 with energy per pulse of 12.5 mJ. When applied, water delivery rate was 11 ml/min. The analysis of variance (ANOVA) showed that laser conditioning significantly decreased the bond strength of all adhesive systems applied on enamel. On dentin, laser conditioning significantly reduced bond strength of etch-and-rinse and one-step self-etch systems; however, laser irradiation under water cooling did not alter bonding of two-step self-etching. It may be concluded that the irradiation with Er,Cr:YSGG laser at 2.8 J/cm2 with water coolant was responsible for a better adhesion to dentin, while enamel irradiation reduced bond strength, irrespective of cooling conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kimmel AI, Rizoiu IM, Eversole LR (1996) Phase Doppler particle analysis of laser energized exploding water droplets (abstract no. 67). Presented at the International Laser Congress, September 1996; Athens, Greece

  2. Meister J, Franzen R, Forner K, Grebe H, Stanzel S, Lampert F, Apel C (2006) Influence of the water content in dental enamel and dentin on ablation with the erbium YAG and YSGG lasers. J Biomed Opt 11:34030

    Article  PubMed  CAS  Google Scholar 

  3. Rizoiu IM, DeShazer L (1994) New laser-matter interaction concept to enhance hard tissue cutting efficiency. SPIE Proc 2134A:309–317

    Google Scholar 

  4. Eversole LR, Rizoiu IM (1995) Preliminary investigations on the utility of an erbium, chromium YSGG laser. J Calif Dental Assoc 23:41–47

    CAS  Google Scholar 

  5. Eversole LR, Rizoiu I, Kimmel AI (1997) Pulpal response to cavity preparation by an erbium, chromium:YSGG laser-powered hydrokinetic system. J Am Dent Assoc 128:1099–1106

    PubMed  CAS  Google Scholar 

  6. Lin S, Caputo AA, Eversole LR, Rizoiu I (1999). Topographical characteristics and shear bond strength of tooth surfaces cut with a laser-powered hydrokinetic system. J Prosthet Dent 82:451–455

    Article  PubMed  CAS  Google Scholar 

  7. Fowler BO, Kuroda S (1986) Changes in heated and in laser-irradiated human tooth enamel and their probable effects on solubility. Calcif Tissue Int 38:197–208

    Article  PubMed  CAS  Google Scholar 

  8. Apel C, Graber HG, Gutknecht N (2000) Calcium solubility of dental enamel following Er,Cr:YSGG laser irradiation. SPIE Proc 3910:318–321

    Article  CAS  Google Scholar 

  9. Young DA, Fried D, Featherstone JDB (2000) Treating occlusal pit and fissure surfaces by IR laser irradiation. SPIE Proc 3910:247–253

    Article  Google Scholar 

  10. Fried D, Ashouri N, Breunig T, Shori R (2002) Mechanism of water augmentation during IR laser ablation of dental enamel. Lasers Surg Med 31:186–193

    Article  PubMed  Google Scholar 

  11. Apel C, Schafer C, Gutknecht N (2003) Demineralization of Er:YAG and Er,Cr:YSGG laser-prepared enamel cavities in vitro. Caries Res 37:34–37

    Article  PubMed  CAS  Google Scholar 

  12. Gutknecht N, Apel C, Schafer C, Lampert F (2001) Microleakage of composite fillings in Er,Cr:YSGG laser-prepared class II cavities. Lasers Surg Med 28:371–374

    Article  PubMed  CAS  Google Scholar 

  13. Perdigão J, Lopes L, Lambrechts P, Leitão J, Van Meerbeek B, Vanherle G (1997) Effects of a self-etching primer shear bond strengths and SEM morphology. Am J Dent 10:141–146

    PubMed  Google Scholar 

  14. Li H, Burrow MF, Tyas MJ (2000) Nanoleakage patterns of four dentin bonding systems. Dent Mater 16:48–56

    Article  PubMed  CAS  Google Scholar 

  15. Cecchini RC, Zezell DM, Oliveira E, Freitas PM, Eduardo CP (2005) Effect of Er:YAG laser on enamel acid resistance: morphological and atomic spectrometry analysis. Lasers Surg Med 37:366–372

    Article  PubMed  Google Scholar 

  16. Barakat MM, Powers JM (1986) In vitro bond strength of cements to treated teeth. Aust Dent J 31:415–419

    Article  PubMed  CAS  Google Scholar 

  17. Hossain M, Nakamura Y, Yamada Y, Kimura Y, Matsumoto M, Matsumoto K (1999) Effects of Er,Cr:YSGG laser irradiation in human enamel and dentin: ablation and morphological studies. J Clin Laser Med Surg 17:155–159

    PubMed  CAS  Google Scholar 

  18. Rizoiu I, Kohanghadosh F, Kimmel AI, Eversole LR (1998) Pulpal thermal responses to an erbium, chromium:YSGG pulsed laser hydrokinetic system. Oral Surg Oral Med Oral Pathol 86:220–223

    CAS  Google Scholar 

  19. Ana PA, Blay A, Miyakawa W, Zezell DM (2007) Thermal analysis of teeth irradiated with Er,Cr:YSGG at low fluences. Laser Phys Lett 4:827–830

    Article  Google Scholar 

  20. Kang HW, Rizoiu I, Welch AJ (2007) Effect of water spray during laser ablation on dental hard tissue. Proc SPIE 6425:64250M1–64250M13

    Google Scholar 

  21. Usumez S, Orhan M, Usumez A (2002) Laser etching of enamel for direct bonding with an Er,Cr:YSGG hydrokinetic laser system. Am J Orthod Dentofacial Orthop 122:649–656

    Article  PubMed  Google Scholar 

  22. Basaran G, Ozer T, Berk N, Hamamci O (2007) Etching enamel for orthodontics with an erbium, chromium:yttrium-scandium-gallium-garnet laser system. Angle Orthod 77:117–123

    Article  PubMed  Google Scholar 

  23. Silverstone LM, Saxton CA, Dogon IL, Fejerskov O (1975) Variation in the pattern of acid etching of human dental enamel examined by scanning electron microscopy. Caries Res 9:373–387

    Article  PubMed  CAS  Google Scholar 

  24. Hossain M, Nakamura Y, Yamada Y, Murakami Y, Matsumoto K (2002) Microleakage of composite resin restoration in cavities prepared by Er,Cr:YSGG laser irradiation and etched bur cavities in primary teeth. J Clin Pediatr Dent 26:263–268

    PubMed  Google Scholar 

  25. Cehreli SB, Gungor HC, Karabulut E (2006) Er,Cr:YSGG laser pretreatment of primary teeth for bonded fissure sealant application: a quantitative microleakage study. J Adhes Dent 8:381–386

    PubMed  CAS  Google Scholar 

  26. Hashimoto M, Ohno H, Yoshida E, Hori M, Sano H, Kaga M, Oguchi H (2003) Enamel bonds made with self-etching primers on ground enamel. Eur J Oral Sci 111:447–453

    Article  PubMed  Google Scholar 

  27. Armstrong SR, Vargas MA, Fang Q, Laffoon JE (2003) Microtensile bond strength of a total-etch 3-step, total-etch 2-step, self etch 2-step, and a self-etch 1-step dentin bonding system through 15-month water storage. J Adhes Dent 5:47–56

    PubMed  Google Scholar 

  28. Torii Y, Itou K, Hikasa R, Iwata S, Nishitani Y (2002) Enamel tensile bond strength and morphology of resin–enamel interface created by acid etching system with or without moisture and self-etching priming system. J Oral Rehabil 29:528–533

    Article  PubMed  CAS  Google Scholar 

  29. Senawongse P, Sattabanasuk V, Shimada Y, Otsuki M, Tagami J (2004) Bond strengths of current systems on intact and ground enamel. J Esthet Restor Dent 16:107–116

    Article  PubMed  Google Scholar 

  30. Yoshiyama M, Matsuo T, Ebisu S, Pashley D (1998) Regional bond strengths of self-etching/self-priming adhesives systems. J Dent 26:609–616

    Article  PubMed  CAS  Google Scholar 

  31. Kubo S, Yokota H, Sata Y, Hayashi Y (2001) The effect of flexural load cycling on the microleakage of cervical resin composites. Oper Dent 26:451–459

    PubMed  CAS  Google Scholar 

  32. Lopes GC, Marson FC, Vieira LC, de Caldeira AM, Baratieri LN (2004) Composite bond strength to enamel with self-etching primers. Oper Dent 29:424–429

    PubMed  Google Scholar 

  33. Toledano M, Osorio R, Ceballos L, Fuentes MV, Fernandes CA, Tay FR, Carvalho RM (2003) Microtensile bond strength of several different adhesive systems to different dentin depths. Am J Dent 16:292–298

    PubMed  Google Scholar 

  34. Inoue S, Vargas MA, Abe Y, Yoshida Y, Lambrechts P, Vanherle G, Sano H, Van Meerbeek B (2003) Microtensile bond strength of eleven contemporary adhesives to enamel. Am J Dent 16:329–334

    PubMed  Google Scholar 

  35. Lee BS, Lin PY, Chen MH, Hsieh TT, Lin CP, Lai JY, Lan WH (2007) Tensile bond strength of Er,Cr:YSGG laser-irradiated human dentin and analysis of dentin-resin interface. Dent Mater 23:570–578

    Article  PubMed  CAS  Google Scholar 

  36. Aranha AC, Eduardo CD, Gutknecht N, Marques MM, Ramalho KM, Apel C (2007) Analysis of the interfacial micromorphology of adhesive systems in cavities prepared with Er,Cr:YSGG, Er:YAG laser and bur. Microsc Res Tech 70:745–751

    Google Scholar 

  37. Ceballos L, Toledano M, Osorio R, Tay FR, Marshall GW (2002) Bonding to Er-YAG-laser-treated dentin. J Dent Res 81:119–122

    Article  Google Scholar 

  38. Nakabayashi N, Kojima K, Masuhara E (1982) The promotion of adhesion by the infiltration of monomers into tooth substrates. J Biomed Mater Res 16:265–273

    Article  PubMed  CAS  Google Scholar 

  39. De Munck J, Van Meerbeek B, Yudhira R, Lambrechts P, Vanherle G (2002) Micro-tensile bond strength of two adhesives to erbium:YAG-lased vs. bur-cut enamel and dentin. Eur J Oral Sci 110:322–329

    Article  PubMed  Google Scholar 

  40. Sheth KK, Staninec M, Sarma AV, Fried D (2004) Selective targeting of protein, water, and mineral in dentin using UV and IR pulse lasers: the effect on the bond strength to composite restorative materials. Lasers Surg Med 35:245–253

    Article  PubMed  Google Scholar 

  41. Besnault C, Attal JP, Ruse D, Degrange M (2004) Self-etching adhesives improve the shear bond strength of a resin-modified glass-ionomer cement to dentin. J Adhes Dent 6:55–59

    PubMed  CAS  Google Scholar 

  42. Borges GA, Spohr, AM, Oliveira WJ, Correr-Sobrinho L, Correr AB, Borges LH (2006) Effect of refrigeration on bond strength of self-etching adhesive systems. Braz Dent J 17:186–190

    Article  PubMed  Google Scholar 

  43. Perdigão J, Lambrechts P, Van Merrbeek B, Tome AR, Vanherle G, Lopes AB (1996) Morphological field emission SEM study of the effect of six phosphoric acid etching agents on human dentin. Dent Mater 12:262–271

    Article  PubMed  Google Scholar 

  44. Van Meerbeek B, Inokoshi S, Braem M, Lambrechts P, Vanherle G (1992) Morphological aspects of the resin–dentin interdiffusion zone with different dentin adhesive systems. J Dent Res 71:1530–1540

    PubMed  Google Scholar 

  45. Oliveira SS, Marshall SJ, Hilton JF, Marshall GW (2002) Etching kinetics of a self-etching primer. Biomaterials 23:4105–4112

    Article  PubMed  CAS  Google Scholar 

  46. Phrukkanon S, Burrow MF, Tyas MJ (1999) The effect of dentine location and tubule orientation on the bond strengths between resin and dentine. J Dent 27:265–274

    Article  PubMed  CAS  Google Scholar 

  47. Van Meerbeek B, Vargas S, Inoue S, Yoshida Y, Peumans M, Lambrechts P, Vanherle G (2001) Adhesives and cements to promote preservation dentistry. Oper Dent 26:s119–s144

    Google Scholar 

Download references

Acknowledgments

The authors thank the research support foundation “Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)” for their grants: number 2003/12182-4 and number 2004/02229-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Bona Matos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botta, S.B., da Ana, P.A., Zezell, D.M. et al. Adhesion after erbium, chromium:yttrium-scandium-gallium-garnet laser application at three different irradiation conditions. Lasers Med Sci 24, 67–73 (2009). https://doi.org/10.1007/s10103-007-0521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-007-0521-3

Keywords

Navigation