Skip to main content

Advertisement

Log in

Fluoride uptake and acid resistance of enamel irradiated with Er:YAG laser

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study evaluated the resistance to demineralization and fluoride incorporation of enamel irradiated with Er:YAG. A total of 110 bovine teeth were selected and divided into eight groups: unlased, 37% phosphoric acid, and samples irradiated with the Er:YAG laser at several fluences (31.84 J/cm2, 25.47 J/cm2, 19.10 J/cm2, 2.08 J/cm2, 1.8 J/cm2, and 0.9 J/cm2). The application of acidulated phosphate fluoride was performed after treatments. All samples were immersed in 2 ml of 2.0 M acetic–acetate acid solution at pH 4.5 for 8 h, and fluoride, calcium, and phosphorus ions dissolved were analyzed by atomic absorption spectrometry and spectrophotometry. The phosphoric acid and 31.84 J/cm2 groups presented the lowest dissolution of calcium and phosphorus ions. Higher fluoride incorporation was observed on 1.8 J/cm2 and 0.9 J/cm2 groups. Based on these results, Er:YAG laser was able to decrease acid dissolution and increase fluoride uptake and can be a promissory alternative for preventive dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Petersen PE, Lennon MA (2004) Effective use of fluorides for the prevention of dental caries in the 21st century: the WHO approach. Community Dent Oral Epidemiol 32:319–321

    Article  PubMed  Google Scholar 

  2. Bratthall D, Hansel-Petersson G, Sundberg G (1996) Reasons for the caries decline: what do the experts believe? Eur J Oral Sci 104:433–435

    Article  Google Scholar 

  3. Marthaler TM (2004) Changes in dental caries 1953–2003. Caries Res 38:173–181

    Article  PubMed  CAS  Google Scholar 

  4. Lima YBO, Cury JA (2003) Seasonal variation of fluoride intake by children in a subtropical region. Caries Res 37:335–338

    Article  PubMed  CAS  Google Scholar 

  5. Featherstone JDB (2000) The science and practice of caries prevention. J Am Dent Assoc 131:887–899

    PubMed  CAS  Google Scholar 

  6. Feathestone JDB (2004) The continuum of dental caries—evidence for a dynamic process. J Dent Res 83:C39–C42

    Article  Google Scholar 

  7. Ten Cate JM, Featherstone JDB (1991) Mechanistic aspects of the interactions between fluoride and dental enamel. CRC Crit Rev Oral Biol 2:283–296

    CAS  Google Scholar 

  8. McCann HG (1968) The solubility of fluorapatite and its relationship to that of calcium fluoride. Arch Oral Biol 13:987–1001

    Article  PubMed  CAS  Google Scholar 

  9. Phan ND, Fried D, Featherstone JDB (1999) Laser-induced transformation of carbonated apatite to fluorapatite on bovine enamel. Proc SPIE 3593:233–240

    Article  CAS  Google Scholar 

  10. Dijkman AG, Boer P, Arends J (1983) In vivo investigation on the fluoride content in and on human enamel after topical applications. Caries Res 17:392–402

    PubMed  CAS  Google Scholar 

  11. Fried D, Featherstone JDB, Visuri SR, Seka W, Walsh JT (1996) The caries inhibition potential of Er:YAG and Er:YSGG laser irradiation. Proc SPIE 2672:73–78

    Article  CAS  Google Scholar 

  12. Apel C, Meister J, Götz H, Duschner H, Gutknecht N (2005) Structural changes in human dental enamel after subablative erbium laser irradiation and its potential use for caries prevention. Caries Res 39:65–70

    Article  PubMed  CAS  Google Scholar 

  13. Nammour S, Demortier G, Florio P, Delhaye Y, Pireaux J-J, Morciaux Y, Powel L (2003) Increase of enamel fluoride retention by low fluence argon laser in vivo. Lasers Surg Med 33:260–263

    Article  PubMed  CAS  Google Scholar 

  14. Delbem ACB, Cury JA, Nakassima CK, Gouveia VG, Theodoro LH (2003) Effect of Er:YAG laser on CaF2 formation and its anti-cariogenic action on human enamel: an in vitro study. J Clin Laser Med Surg 21:197–201

    Article  PubMed  CAS  Google Scholar 

  15. Boari HGD, Zezell DM, Eduardo CP (2000) Dye enhancing Nd:YAG irradiation on enamel aiming caries prevention. J Dent Res 19:1079

    Google Scholar 

  16. Tepper AS, Zehnder M, Pajarola GF, Schmidlin PR (2004) Increased fluoride uptake and acid resistance by CO2 laser-irradiation through topically applied fluoride on human enamel in vitro. J Dent 32:635–641

    Article  PubMed  CAS  Google Scholar 

  17. Featherstone JBD, Fried D, Bitten ER (1997) Mechanisms of laser induced solubility reduction in dental enamel. Proc SPIE 2973:112–116

    Article  CAS  Google Scholar 

  18. Ana PA, Bachmann L, Zezell DM (2006) Lasers effects on enamel for caries prevention. Laser Phys 16:865–875

    Article  CAS  Google Scholar 

  19. Stern RH, Sognnaes RF (1972) Laser inhibition of dental caries suggested by first tests in vivo. J Am Dent Assoc 85:1087–1090

    PubMed  CAS  Google Scholar 

  20. Morioka T, Tagomori S, Oho T (1991) Acid resistance of lased human enamel with Er:YAG laser. J Clin Laser Med Surg 9:215–217

    Google Scholar 

  21. Apel C, Meister J, Schmitt N, Gräber H-G, Gutknecht N (2002) Calcium solubility of dental enamel following sub-ablative Er:YAG and Er:YSGG laser irradiation in vitro. Lasers Surg Med 30:337–341

    Article  PubMed  CAS  Google Scholar 

  22. Kantorowitz Z, Featherstone JDB, Fried D (1998) Caries prevention by CO2 laser treatment: dependency on the number of pulses used. J Dent Am Assoc 129:585–591

    CAS  Google Scholar 

  23. Seka W, Featherstone JDB, Fried D, Visuri SR, Walsh JT (1996) Laser ablation of dental hard tissue: from explosive ablation to plasma-mediated ablation. Proc SPIE 2672:144–158

    Article  Google Scholar 

  24. Delbem ACB, Cury JA (2002) Effect of application time of APF and NAF gels on microhardness and fluoride uptake of in vitro enamel caries. Am J Dent 15:169–172

    PubMed  Google Scholar 

  25. Arimoto N, Susaki A, Katada H, Senda A (1998) Acid resistance in lased dentin. Proc. International Congress on Laser in Dentistry, pp 61–62

  26. Cecchini RC, Zezell DM, Oliveira E, Freitas PM, Eduardo CP (2005) Effect of Er:YAG laser on enamel acid resistance: morphological and atomic spectrometry analysis. Lasers Surg Med 37:366–372

    Article  PubMed  Google Scholar 

  27. Li ZZ, Code JE, Van de Merme WP (1992) Er:YAG laser ablation of enamel and dentin of human teeth: determination of ablation rates at various fluences and pulse repetition rates. Lasers Surg Med 12:625–630

    Article  PubMed  CAS  Google Scholar 

  28. Apel C, Meister J, Ioana RS, Franzen R, Hering P, Gutkanecht N (2002) The ablation threshold of Er:YAG and Er:YSGG laser radiation in dental enamel. Lasers Med Sci 17:246–52

    Article  PubMed  CAS  Google Scholar 

  29. Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg 19:515–530

    Article  PubMed  CAS  Google Scholar 

  30. Gouw-Soares S, Haypek O, Pelino JE, Eduardo CP (2001) Temperature rises in cavities prepared in vitro by Er:YAG laser. J Oral Laser Appl 1:119–123

    Google Scholar 

  31. Hossain M, Nakamura Y, Kimura Y, Yamada Y, Ito M, Matsumoto K (2000) Caries preventive effect of Er:YAG laser irradiation with or without water mist. J Clin Laser Med Surg 18:61–65

    PubMed  CAS  Google Scholar 

  32. Burkers EJ, Hoke J, Gomes E, Wolbarsht M (1992) Wet versus dry enamel ablation by Er:YAG laser. J Prosthet Dent 67:847–851

    Article  Google Scholar 

  33. Apel C, Schafer C, Gutknecht N (2003) Demineralization of Er:YAG and Er,Cr:YSGG laser-prepared enamel cavities in vitro. Caries Res 37:34–37

    Article  PubMed  CAS  Google Scholar 

  34. Stern RH, Sognnaes RF, Goodman F (1966) Laser effect on in vitro enamel permeability and solubility. J Am Dent Assoc 73:838–843

    PubMed  CAS  Google Scholar 

  35. Nelson DGA, Wefel JS, Jongebloed WL, Featherstone JDB (1987) Morphology, histology and cristallography of human dental enamel treated with pulsed low-energy infrared laser irradiation. Caries Res 21:411–426

    PubMed  CAS  Google Scholar 

  36. Fowler BO, Kuroda S (1986) Changes in heated and in laser-irradiated human tooth enamel and their probable effects on solubility. Calcif Tissue Int 38:197–208

    Article  PubMed  CAS  Google Scholar 

  37. Bachmann L, Craievich AF, Zezell DM (2004) Crystalline structure of dental enamel after Ho:YLF laser irradiation. Arch Oral Biol 49:923–929

    Article  PubMed  CAS  Google Scholar 

  38. Oho T, Morioka T (1990) A possible mechanism of acquired acid resistance of human dental enamel by laser irradiation. Caries Res 24:86–92

    Article  PubMed  CAS  Google Scholar 

  39. Hsu J, Fox JL, Wang Z, Powel GL, Otsuka M, Higuchi WI (1998) Combined effects of laser irradiation/solution fluoride ion on enamel demineralization. J Clin Laser Med Surg 16:93–105

    PubMed  CAS  Google Scholar 

  40. Shirasuka T, Kodaka T, Debari K, Matsumoto K (1991) Acid resistance on human dental enamel by laser irradiation and fluoride treatment. J Dent Res 70:350

    Google Scholar 

Download references

Acknowledgment

The authors thank Opus Dent (Lumenis, Israel) for the concession of the Opus 20 equipment to LELO–FOUSP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Maria Zezell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bevilácqua, F.M., Zezell, D.M., Magnani, R. et al. Fluoride uptake and acid resistance of enamel irradiated with Er:YAG laser. Lasers Med Sci 23, 141–147 (2008). https://doi.org/10.1007/s10103-007-0466-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-007-0466-6

Keywords

Navigation