Skip to main content

Advertisement

Log in

Adhesion of composite luting cement to Er:YAG-laser-treated dentin

  • Original article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Although some studies claim to the increase of composite resin adhesion to Er:YAG-laser-treated dentin, there are still no reports on the adhesion of composite resin cements to the irradiated surface. This in vitro study evaluated the tensile bond strength (TBS) of a composite resin cement to dentin treated with the Er:YAG laser. Sixty human dentin samples were divided into four groups (n = 15): G1 (Control)—no treatment; G2-Er:YAG laser 60 mJ, 2 Hz, with water cooling, non-contact (19 J/cm2); G3-Er:YAG laser 60 mJ, 10 Hz, 50/10 fiber, contact, without water cooling (40 J/cm2); G4-Er:YAG laser 60 mJ, 10 Hz, 50/10 fiber, contact, with water cooling (40 J/cm2). After the surface treatment, each sample was submitted to bonding procedures. The analysis of variance (ANOVA) and Tukey tests revealed no statistical significant difference on TBS values for groups G1 (13.73 ± 3.05 MPa), G2 (12.60 ± 2.09 MPa) and G4 (11.17 ± 4.04 MPa). G4 was not statistically different from G3 (8.64 ± 2.06 MPa). Er:YAG laser irradiation with different settings can constitute an alternative tool to the use of composite resin-luting cements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The Er:YAG Laser (Kavo Key II, KaVo, Germany) equipment was purchased by the Special Laboratory of Lasers in Dentistry (LELO/FOUSP) with financial support given from FAPESP (grant # 97/10823-0).

  2. User manual (Key Laser 2, KaVo, Germany), Session Handstuck E 2055/ Handstuck P 2056, page 14.

References

  1. Hasegawa EA, Boyer DB, Chan DCN (1991) Hardening of dual-cured cements under composite resin inlays. J Prosthet Dent 66:87–192

    Google Scholar 

  2. Takada T (1993) The occlusal wear of posterior resin composites part 2. Short-term clinical evaluation of several restorative resin composites and resin inlays. Japanese Journal of Conservative Dentistry 36:452–494

    Google Scholar 

  3. El-Mowafy OM, Rubo MH, El-Badrawy WA (1991) Hardening of new resin cements cured through a ceramic inlay. Oper Dent 24:38–44

    Google Scholar 

  4. Shimada Y, Yamaguchi S, Tagami J (2002) Micro-shear bond strength of dual-cured resin cement to glass ceramics. Dent Mater 18:380–388

    Article  PubMed  CAS  Google Scholar 

  5. Moritz A (1998) Procedures for enamel and dentin conditioning: a comparison of conventional and innovative methods. J Esthet Dent 10:84–93

    Article  PubMed  CAS  Google Scholar 

  6. Burnett LH Jr, Conceição EN, Pelino JEP, Eduardo CP (2001) Comparative study of influence on tensile bond strength of a composite to dentin using Er:YAG laser, air abrasion, or air turbine for preparation of cavities. J Clin Laser Med Surg 19:199–202

    Article  PubMed  Google Scholar 

  7. Visuri SR, Gilbert JL, Wright DD, Wigdor HA, Walsh JT Jr (1996) Shear strength of composite bonded to Er:YAG laser-prepared dentin. J Dent Res 75:599–605

    PubMed  CAS  Google Scholar 

  8. Niu W, Eto J, Kimura Y, Takeda FH, Matsumoto K (1998) A study on microleakage after resin filling of Class V cavities prepared by Er:YAG laser. J Clin Laser Med Surg 16:227–231

    PubMed  CAS  Google Scholar 

  9. Gonçalves M, Corona SAM, Borsatto MC, Silva PCG, Pecora JD (2002) Tensile bond strength of dentin–resinous system interfaces conditioned with Er:YAG laser irradiation. J Clin Laser Surg Med 20:89–93

    Article  Google Scholar 

  10. Hibst R (2002) Lasers for caries removal and cavity preparations: state of the art and future directions. J Oral Laser Appl 2:203–212

    Google Scholar 

  11. Dostalova T, Krejsa O, Hamal K, Kubelka J, Prochazka S, Himmlova L (1997) Dentin and pulp response to Erbium:YAG laser ablation: a preliminary evaluation of human teeth. J Clin Laser Med Surg 15:117–121

    PubMed  CAS  Google Scholar 

  12. Glockner K, Rumpler J, Ebeleseder K, Stadtler P (1998) Intrapulpal temperature during preparation with the Er:YAG laser compared to the conventional bur: an in vitro study. J Clin Laser Med Surg 16:153–157

    PubMed  CAS  Google Scholar 

  13. Takamori K (2000) A histopathological and immunohistochemical study of dental pulp and pulpal nerve fibers in rats after the cavity preparation using Er:YAG laser. J Endod 6:95–99

    Article  Google Scholar 

  14. Jayawardena JA, Kato J, Loriya K, Takagi Y (2001) Pulpal response to exposure with Er:YAG laser. Oral Med Oral Surg Oral Pathol 91:222–229

    CAS  Google Scholar 

  15. Nair PNR, Baltensperger MM, Luder HU, Eyrich GKH (2003) Pulpal response to Er:YAG laser drilling of dentin in healthy human third molars. Lasers Surg Med 32:203–209

    Article  PubMed  Google Scholar 

  16. Eguro T, Maeda T, Otsuki M, Nishimura Y, Katsuumi I, Tanaka H (2002) Adhesion of Er:YAG laser-irradiated dentin and composite resins: application of various treatments on irradiated surface. Lasers Surg Med 30:267–272

    Article  PubMed  Google Scholar 

  17. Keller U, Hibst R (1989) Experimental studies of the application of the Er:YAG laser on the dental hard substances: II. Light microscopic and SEM investigations. Laser Surg Med 9:345–351

    Article  CAS  Google Scholar 

  18. Kataumi M, Nakajima M, Yamada T, Tagami J (1998) Tensile bond strength and SEM evaluation of Er:YAG laser irradiated dentin using dentin adhesive. Dent Mater J 17:125–138

    Google Scholar 

  19. Ceballos L, Toledano M, Osorio R, Tay FR, Marshall GW (2002) Bonding to Er:YAG-laser-treated dentin. J Dent Res 81:119–122

    Article  Google Scholar 

  20. Sassi JF, Chimello DT, Borsatto MC, Corona SA, Pecora JD, Palma-Dibb RG (2004) Comparative study of the dentin/adhesive systems interface after treatment with Er:YAG laser and acid etching using scanning electron microscope. Lasers Surg Med 34:385–390

    Article  PubMed  Google Scholar 

  21. Giachetti L, Scaminaci Russo D, Scarpelli F, Vitale M (2004) SEM analysis of dentin treated with the Er:YAG laser: a pilot study of the consequences resulting from laser use on adhesion mechanisms. J Clin Laser Med Surg 22:35–41

    Article  PubMed  Google Scholar 

  22. Pashley DH, Sano H, Ciucchi B, Carvalho RM, Russel CM (1995) Bond strength versus dentin structures: a modeling approach. Arc Oral Biol 40:1109–1118

    Article  CAS  Google Scholar 

  23. Mehl A, Folwaczny M, Haffner C, Hickel R (1999) Bactericidal effects of 2.94 microns Er:YAG-laser irradiation in dental root canals. J Endod 25:490–493

    Article  PubMed  CAS  Google Scholar 

  24. Schoop U, Moritz A, Kluger W, Patruta S, Goharkhay K, Sperr W, Wernisch J, Gattringer R, Mrass P, Georgopoulos A. (2002) The Er:YAG laser in endodontics: results of an in vitro study. Lasers Surg Med 30:360–364

    Article  PubMed  Google Scholar 

  25. Perin FM, Franca SC, Silva-Sousa YT, Alfredo E, Saquy PC, Estrela C, Sousa-Neto MD (2004) Evaluation of the antimicrobial effect of the Er:YAG laser irradiation versus 1% sodium hypochlorite irrigation for root canal disinfection. Aust Endod J 30:20–22

    Article  PubMed  Google Scholar 

  26. Folwaczny M, Mehl A, Aggstaller H, Hickel R (2002) Antimicrobial effects of 2.94 μm Er:YAG laser radiation on root surfaces: an in vitro study. J Clin Periodontol 29:73–78

    Article  PubMed  Google Scholar 

  27. Dostalova T, Jelinkova H, Kucerova H, Krejsa O, Hamal K, Kubelka J, Prochazka S (1998) Noncontact Er:YAG laser ablation: clinical evaluation. J Clin Laser Med Surg 16:273–282

    PubMed  CAS  Google Scholar 

  28. Blay CC (2001) Comparative analysis of bacterial decrease by Er:YAG laser radiation and by a mounted on a high-rotation device after removal of carious tissue in dentine: study in anima nobile. Dissertation (Professional Master’s Degree, “Lasers in Dentistry”), Nuclear and Energy Research Institute/School of Dentistry, University of São Paulo, São Paulo

  29. Freitas PM, Navarro RS, Almeida J, Imparato JCP, Eduardo CP (2005) Morphological analysis of cavities prepared by different parameters of Er:YAG laser. Lasers in dentistry XI. Proc SPIE 5687:179–189

    Article  Google Scholar 

  30. Gelskey SC, White JM, Pruthi VK (1993) The effectiveness of Nd:YAG laser in the treatment of dentin hypersensitivity. J Can Dent Assoc 59:383–386

    Google Scholar 

  31. Inoue H, Izumi T, Ishikawa H, Watanabe K (2004) Short-term histomorphological effects of Er:YAG laser irradiation to rat coronal dentin-pulp complex. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:246–250

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Special Laboratory of Lasers in Dentistry (LELO) of the University of São Paulo (Brazil) and KAVO (Brazil) for the use of the Er:YAG Laser, and express their gratitude to FAPESP for the financial support given for the acquisition of the equipment (Grant no. 97/10823-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos de P. Eduardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrieri, T.C.D., de Freitas, P.M., Navarro, R.S. et al. Adhesion of composite luting cement to Er:YAG-laser-treated dentin. Lasers Med Sci 22, 165–170 (2007). https://doi.org/10.1007/s10103-006-0433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-006-0433-7

Keywords

Navigation