Skip to main content
Log in

A novel modelling and experimental technique to predict and measure tissue temperature during CO2 laser stimuli for human pain studies

  • Original article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Laser nerve stimulation is now accepted as one of the preferred methods for applying painful stimuli to human skin during pain studies. One of the main concerns, however, is thermal damage to the skin. We present recent work based on using a CO2 laser with a remote infrared (IR) temperature sensor as a feedback system. A model for predicting the subcutaneous skin temperature derived from the signal from the IR detector allows us to accurately predict the laser parameters, thus maintaining an optimum pain stimulus whilst avoiding dangerous temperature levels, which could result in thermal damage. Another aim is to relate the modelling of the CO2 fibre laser interaction to the pain response and compare these results with practical measurements of the pain threshold for various stimulus parameters. The system will also allow us to maintain a constant skin temperature during the stimulus. Another aim of the experiments underway is to review the psychophysics for pain in human subjects, permitting an investigation of the relationship between temperature and perceived pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bergamasco M, Alessi AA, Calcara M (1997) Thermal feedback in virtual environments. Presence 6:617–629

    Google Scholar 

  2. Mor J, Carmon A (1975) Laser emitted radiant heat for pain research. Pain 1:233–237

    Article  PubMed  CAS  Google Scholar 

  3. Svensson P, Rosenberg B, Beydoun A, Morrow TJ, Casey K (1997) Comparative psychophysical characteristics of cutaneous CO2 laser and contact heat stimulation. Somatosens Mot Res 14(2):113–118

    Article  PubMed  CAS  Google Scholar 

  4. Svensson P, Bjerring P, Arendtnielsen L, Nielsen JC, Kaaber S (1991) Comparison of four laser type for experimental pain stimulation on oral-mucosa and hairy skin. Lasers Surg Med 11(4):313–324

    Article  PubMed  CAS  Google Scholar 

  5. Bromm B, Jahnke MT, Treed RD (1984) Response of human cutaneous afferents to CO2 laser stimuli causing pain. Exp Brain Res 55:158–166

    Article  PubMed  CAS  Google Scholar 

  6. Derbyshire SW, Jones AK, Gyulai F, Clark S, Towsend D, Firestone L (1997) Pain processing of three levels of noxious stimulation produces differential patterns of central activity. Pain 73:431–445

    Article  PubMed  CAS  Google Scholar 

  7. Chen AC (1993) Human brain measures of clinical pain: a review I. Topographic mappings. Pain 54:115–132

    Article  PubMed  CAS  Google Scholar 

  8. Bingel U, Quante M, Knab R, Bromm B, Weiller C, Buchel C (2002) Subcortical structures involved in pain evidence from single-trial Fmri. Pain 99:313–321

    Article  PubMed  CAS  Google Scholar 

  9. Biehl R, Treede RD, Bromm B (1984) Pain ratings and short radiant heat pulses. In: Bromm B (ed) Pain measurement in man: neurophysiological correlates of pain. Elsevier, Amsterdam, pp 397–408

    Google Scholar 

  10. Prahl SA, Vitkin IA, Bruggemann U, Wilson BC, Anderson RR (1992) Determination of optical properties of turbid media using pulsed photo thermal radiometry. Phys Med Biol 37:1203–1217

    Article  PubMed  CAS  Google Scholar 

  11. Choi B, Pearce JA, Welch AJ (2000) Modelling infrared temperature measurements: implications for laser irradiation and cryogen cooling studies. Phys Med Biol 45:541–557

    Article  PubMed  CAS  Google Scholar 

  12. Incropetra FP, DeWitt DP (1996) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  13. Valvano JW, Pearce JA (1995) Temperature measurement. In: Welch AJ, van Gemert MJC (eds) Optical thermal-response of laser-irradiated tissue. Plenum, New York

    Google Scholar 

  14. Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-μm region. Appl Opt 12:555–563

    Article  CAS  Google Scholar 

  15. Jansen ED, van Leeuwen TG, Motamedi M, Borst C, Welch AJ (1994) Temperature dependence of the absorption coefficient of water for mind-infrared laser radiation. Lasers Surg Med 14:258–268

    Article  PubMed  CAS  Google Scholar 

  16. Marechal Y (1991) “Infrared spectra of water.” I. Effect of temperature and H/D isotopic dilution. J Chem Phys 95:5565–5573

    Article  CAS  Google Scholar 

  17. User’s Guide for Infrared Thermometer/Transmitter (OS550-BB SERIES), Calex Electronics Limited, Harmill Industrial Estate, Leighton Buzzard, England

  18. Advanced Research and Technology in Photonics, GmbH, Schwarzshildstrabe, Berlin, Germany

  19. Eyal O, Katzir A (1994) Thermal feedback-control techniques for transistor logic CO2 laser used for irradiation of biological tissue utilizing infrared fibre-optic radiometry. Appl Opt 33:1751–1754

    Google Scholar 

  20. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon, Oxford, pp 51–91

    Google Scholar 

  21. Crank J, Nicolson P (1947) A practical method for numerical evaluation of solution of P.D.E of the heat conduction type. Proc Camb Philos Soc 43:50–67

    Article  Google Scholar 

  22. Anderson RR, Parrish JA (1981) The optics of human skin. J Invest Dermatol 77:13–19

    Article  PubMed  CAS  Google Scholar 

  23. Esterowitz L, Stoneman RC (1990) Trivalent thulium laser at 1.95 μm for enhanced laser—tissue interaction. Proc Spie 1202:175–178

    Article  Google Scholar 

  24. Litjens R, Quickenden T, Freeman C (1999) Visible and near-ultraviolet absorption spectrum of liquid water. Appl Opt 38:1216–1223

    Article  PubMed  CAS  Google Scholar 

  25. Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt 12(3):555–563

    CAS  Google Scholar 

  26. Walsh JT Jr, Cummings JP (1994) Effect of the dynamic optical properties of water on mid-infrared laser ablation. Lasers Surg Med 15:295–305

    Article  PubMed  Google Scholar 

  27. Shori RK, Walston AA, Stafsudd OM, Fried D, Walsh JT Jr (2001) Quantification and modelling of the dynamics changes in the absorption coefficient of water at λ=2.94 μm. IEEE J Sel Top Quantum Electron 7(6):959–970

    Article  CAS  Google Scholar 

  28. Hale George M, Querry Marvin R (1973) Optical constants of water in the200-nm to 200-μm wavelength region. Appl Opt 12(3):555–563

    Article  Google Scholar 

  29. McKenzie AL (1990) Physics of thermal processes in laser-tissue interaction. Phys Med Biol 35(9):1175–1209

    Article  PubMed  CAS  Google Scholar 

  30. Stoll AM (1977) Thermal properties of human skin related to non-destructive measurement of epidermal thickness. J Invest Dermatol 69:328–332

    Article  PubMed  CAS  Google Scholar 

  31. Pennes H (1948) Analysis of tissue and arterial blood temperatures in the resting forearm. J Appl Physiol 1:93–122

    PubMed  CAS  Google Scholar 

  32. Vogt BA, Derbyshire SW, Jones AKP (1996) Pain processing in four regions of human cingulate cortex localized with coregistered PET and MR imaging. Eur J Neurosci 8:1461–1473

    Article  PubMed  CAS  Google Scholar 

  33. Hardy JD, Bard P (1974) Body temperature regulation. In: Mountcastle VB (ed) Medical physiology, 13th edn. Mosby, St. Louis, MO

    Google Scholar 

  34. Treede RD, Meyer RA, Raja SN, Campbell JN (1995) Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. J Physiol 483(3):747–758

    PubMed  CAS  Google Scholar 

  35. Tillman D-B, Treede R-D, Meyer RA, Campbell JN (1995) Response of C fibre nociceptors in the anaesthetized monkey to heat stimuli: estimates of receptor depth and threshold. J Physiol 485(3):753–765

    PubMed  CAS  Google Scholar 

  36. Chapman CR, Casey KL, Dubner R, Foley KM, Gracely RH, Reading AE (1985) Pain measurement: an overview. Pain 22:1–31

    Article  PubMed  CAS  Google Scholar 

  37. Dyck PJ, Zimmeman IR, Johnson DM, Gillen D, Hokanson JL, Kames JL, Gruener G, O’Brien PC (1996) A standard test of heat response using CASE IV. J Neurol Sci 136:54–63

    Article  PubMed  CAS  Google Scholar 

  38. Wu G, Campbell James N, Meyer Richard A (2001) Effect of baseline skin temperature on pain rating to supra-threshold temperature-controlled stimuli. Pain 90:151–156

    Article  PubMed  CAS  Google Scholar 

  39. Nielsen J, Arendt-Nielsen L (1998) The influence of rate of temperature change and peak stimulus duration on pain intensity and quality. Somatosens Mot Res 15:220–229

    Article  PubMed  CAS  Google Scholar 

  40. Berbenel JC (1988) The thermal properties of skin. In: Barton RSP, Edwards C (eds) The physical nature of skin. MTP Press, Lancaster, pp 191–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Hamed Al-Saadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Saadi, M., Nadeau, V. & Dickinson, M.R. A novel modelling and experimental technique to predict and measure tissue temperature during CO2 laser stimuli for human pain studies. Lasers Med Sci 21, 95–100 (2006). https://doi.org/10.1007/s10103-006-0381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-006-0381-2

Keywords

Navigation