Skip to main content

Advertisement

Log in

Photoradiation could influence the cytoskeleton organization and inhibit the survival of human hepatoma cells in vitro

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-power laser therapy has become popular in clinical applications including promoting wound healing and pain relief. However, effects of this photoradiation on human hepatoma cells are rarely studied. Previously, we found 808 nm gallium aluminum arsenide (GaAlAs) continuous wave laser had an inhibitory effect on the proliferation of human hepatoma cell lines HepG2 and J-5 at the energy density of 5.85 and 11.7 J/cm2, respectively. The aim of the present study was to evaluate the possible mechanism of action of this photoradiation on HepG2 and J-5 cells. HepG2 and J-5 cells were cultured in 24-well plates for 24 h. After photoradiation by 130 mW 808 nm GaAlAs continuous wave laser for different time intervals (0, 30, 60, 90, 120, 150, and 180 s), Western blot and immunofluorescent staining were used to examine the expression and distribution of histone and cytoskeletal proteins. The cell counts as well as histone and synemin expression of HepG2 and J-5 cells were reduced by photoradiation at the energy density of 5.85 and 11.7 J/cm2, respectively. Furthermore, the architecture of cytoskeletons and the distribution of intermediate filament-associated proteins (plectin and synemin) were disorganized by photoradiation. Photoradiation by 808 nm GaAlAs continuous wave laser at the energy density of 5.85 and 7.8 J/cm2 inhibited the survival of human hepatoma cell lines. The mechanism might reduce synthesis of histone and synemin. Reduced histone synthesis might further reduce the proliferation rate of these cells. Reduced synemin synthesis might result in the destruction of the cytoskeleton. Therefore, the net effects by this photoradiation were reduced cell survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LPLI:

Low-power laser irradiation

HCC:

Hepatocellular carcinoma

MT:

Microtubule

AF:

Actin filament

IF:

Intermediate filament

CK:

Cytokeratin

IFAP:

Intermediate filament-associated protein

References

  1. Gur A, Sarac AJ, Cevik R, Altindag O, Sarac S (2004) Efficacy of 904 nm gallium arsenide low level laser therapy in the management of chronic myofascial pain in the neck: a double-blind and randomized-controlled trial. Lasers Surg Med 35(3):229–235

    Article  PubMed  Google Scholar 

  2. Shimizu N, Yamaguchi M, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y (1995) Inhibition of prostaglandin E2 and interleukin 1-β production by low-power laser irradiation in stretched human periodontal ligament cells. J Dent Res 74(7):1382–1388

    Article  PubMed  CAS  Google Scholar 

  3. Byrnes KR, Barna L, Chenault VM, Waynant RW, Ilev IK, Longo L, Miracco C, Johnson B, Anders JJ (2004) Photobiomodulation improves cutaneous wound healing in an animal model of type II diabetes. Photomed Laser Surg 22(4):281–290

    Article  PubMed  Google Scholar 

  4. Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23:492–496

    Article  PubMed  CAS  Google Scholar 

  5. Ozawa Y, Shimizu N, Abiko Y (1997) Low-energy diode laser irradiation reduced plasminogen activator activity in human periodontal ligament cells. Lasers Surg Med 21:456–463

    Article  PubMed  CAS  Google Scholar 

  6. Loevschall H, Arenholt-Bindslev D (1994) Effect of low level diode laser irradiation of human oral mucosa fibroblasts in vitro. Lasers Surg Med 14:347–354

    Article  PubMed  CAS  Google Scholar 

  7. Kreisler M, Christoffers AB, Willershausen B, d’Hoedt B (2003) Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol 30:353–358

    Article  PubMed  Google Scholar 

  8. Kipshidze N, Nikolaychik V, Keelan MH, Shankar LR, Khanna A, Kornowski R, Leon M, Moses J (2001) Low-power helium:neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28:355–364

    Article  PubMed  CAS  Google Scholar 

  9. Kao MJ, Sheen LY (2003) Effects of infrared and low-power laser irradiation on cell viability, glutathione and glutathione-related enzyme activities in primary rat hepatocytes. J Formos Med Assoc 102(7):486–491

    PubMed  CAS  Google Scholar 

  10. Castro-e-Silva O Jr, Zucoloto S, Marcassa LG, Marcassa J, Kurachi C, Melo CAS, Ramalho LNZ, Bagnato VS (2003) Spectral response for laser enhancement in hepatic regeneration for hepatectomized rats. Lasers Surg Med 32(1):50–53

    Article  PubMed  Google Scholar 

  11. Castro-e-Silva O Jr, Zucoloto S, Menegazzo LAG, Granato RG, Marcassa LG, Bagnato VS (2001) Laser enhancement in hepatic regeneration for partially hepatectomizd rats. Lasers Surg Med 29:73–77

    Article  Google Scholar 

  12. Liu YH, Cheng CC, Ho CC, Pei RJ, Lee KY, Yeh KT, Chan Y, Lai YS (2004) Effects of diode 808 nm GaAlAS low-power laser irradiation on inhibition the proliferation of human hepatoma cells in vitro and their possible mechanism. Res Commun Mol Pathol Pharmacol (in print)

  13. Feldmann G (1989) The cytoskeleton of the hepatocytes. Structure and functions. J Hepatol 8:380–386

    Article  PubMed  CAS  Google Scholar 

  14. Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filament in health and disease. Science 279:514–519

    Article  PubMed  CAS  Google Scholar 

  15. Van Eyken P, Desmet VJ (1993) Cytokeratins and the liver. Liver 13:113–122

    PubMed  Google Scholar 

  16. Omary MB, Ku NO (1997) Intermediate filament proteins of the liver: emerging disease association and function. Hepatology 25:1043–1048

    Article  PubMed  CAS  Google Scholar 

  17. Su B, Pei RJ, Yeh KT, Hsu YH, Lai YS (1994) Could the cytokeratin molecule be modulated during tumor transformation in hepatocellular carcinoma? Pathobiology 62:155–159

    PubMed  CAS  Google Scholar 

  18. Liu YH, Pei RJ, Yeh CC, Lee KY, Yeh KT, Hsu YH, Ho CC, Lai YS (1997) The alteration of cytokeratin 18 molecule and its mRNA expression during tumor transformation in hepatoma. Res Commun Mol Pathol Pharmacol 96(3):243–253

    PubMed  CAS  Google Scholar 

  19. Svitkina TM, Verkhovsky AB, Borisy GG (1996) Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of cytoskeleton. J Cell Biol 135:991–1007

    Article  PubMed  CAS  Google Scholar 

  20. Bellin RM, Huiatt TW, Critchley DR, Robson RM (2001) Synemin may function to directly link muscle cell intermediate filaments to both myofibrillar Z-lines and costameres. J Biol Chem 276(34):32330–32337

    Article  PubMed  CAS  Google Scholar 

  21. Wiche G (1998) Role of plectin in cytoskeleton organization and dynamics. J Cell Sci 111:2477–2486

    PubMed  CAS  Google Scholar 

  22. Olive M, Goldfarb L, Dagvadorj A, Sambuuhin N, Paulin D, Li Z, Goudeau B, Vicart P, Ferrer I (2003) Expression of the intermediate filament protein synemin in myofibrillar myopathies and other muscle diseases. Acta Neuropathol 106:1–7

    PubMed  CAS  Google Scholar 

  23. Ho CC, Ho HC, Liu YH, Pei RJ, Cheng CC, Lee KY, Yeh KT, Lai YS (2004) Altered synemin could affect the organization of intermediate filament in human hepatocellular carcinoma. J Med (in print)

  24. Reuner KH, Dunker P, van der Does A, Wiederhold M, Just I, Aktories K, Katz N (1996) Regulation of actin synthesis in rat hepatocytes by cytoskeletal rearrangements. Eur J Cell Biol 69:189–196

    PubMed  CAS  Google Scholar 

  25. Tolstonog GV, Sabasch M, Traub P (2002) Cytoplasmic intermediate filaments are stably associated with nuclear matrices and potentially modulate their DNA-binding function. DNA Cell Biol 21(3):213–239

    Article  PubMed  CAS  Google Scholar 

  26. Katsuma Y, Marceau N, Ohta M, French SW (1988) Cytokeratin intermediate filaments of rat hepatocytes: different cytoskeletal domains and their three-dimensional structure. Hepatology 8(3):559–568

    Article  PubMed  CAS  Google Scholar 

  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  28. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gel to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76(9):4350–4354

    Article  PubMed  CAS  Google Scholar 

  29. Basford JR (1995) Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 16:331–342

    Article  PubMed  CAS  Google Scholar 

  30. Shu B, Wu Z, Hao L, Zeng D, Feng G, Lin Y (2002) Experimental study on He–Ne laser irradiation to inhibit scar fibroblast growth in culture. Chin J Traumatol 5(4):246–249

    PubMed  Google Scholar 

  31. Mendez TM, Pinheiro AL, Pacheco MT, Nascimento PM, Ramalho LM (2004) Dose and wavelength of laser light have influence on the repair of cutaneous wounds. J Clin Laser Med Surg 22(1):19–25

    Article  PubMed  Google Scholar 

  32. Webb C, Dyson M, Lewis WHP (1998) Stimulatory effect of 660 nm low level laser energy on hypertrophic scar-derived fibroblasts: possible mechanism for increase in cell counts. Lasers Surg Med 22:294–301

    Article  PubMed  CAS  Google Scholar 

  33. Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP (2004) Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg Med 34(3):260–265

    Article  PubMed  Google Scholar 

  34. Chen YJ, Jeng JH, Lee BS, Chang HF, Chen KC, Lan WH (2002) Effects of Nd:YAG laser irradiation on cultured human gingival fibroblasts. Lasers Surg Med 27(5):471–478

    Article  Google Scholar 

  35. Liu YH, Su BS, Pei RJ, Yeh CC, Yeh KT, Lee KY, Hsu YH, Ho CC, Lai YH (2001) Stability of cytokeratin18 in human liver cells during colchicines induced microtubule disruption. Food Chem Toxicol 39:85–89

    Article  PubMed  CAS  Google Scholar 

  36. Rood PA, Haas AF, Graves PJ, Wheeland RG, Isseroff RR (1992) Low-energy helium neon laser irradiation does not alter human keratinocyte differentiation. J Invest Dermatol 99(4):445–448

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Miss Sue-Hua Wang and Ing-Jen Wu for their invaluable technical assistance. We also thank Professor Jing-Gung Chung for providing the cell lines and critical comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yih-Shyong Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YH., Ho, CC., Cheng, CC. et al. Photoradiation could influence the cytoskeleton organization and inhibit the survival of human hepatoma cells in vitro. Lasers Med Sci 21, 42–48 (2006). https://doi.org/10.1007/s10103-005-0369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-005-0369-3

Keywords

Navigation