Skip to main content
Log in

Optical coherence tomography of the Ex-PRESS miniature glaucoma implant

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Purpose: To describe the localisation of the Ex-PRESS miniature glaucoma implant with an experimental setup for optical coherence tomography (OCT) of the anterior segment of the eye. Methods: An OCT scanner, central wavelength 1,280 nm, bandwidth 60 nm, resolution of 12 μm, was built onto a slitlamp to scan the anterior segment of the eye. Five ex-vivo porcine eyes received an Ex-PRESS miniature glaucoma implant and were used as a model to visualise the position of the implant in the anterior segment. Results: In the ex-vivo porcine eyes, the OCT images showed the anatomy of the anterior segment in great detail. The anterior segment OCT was able to visualise the whole outline and position of the implant. The abrupt change in reflectivity going from tissue to the implant resulted in a clear border along the circumference of the whole device. Conclusion: In this paper, we have shown that we were able to outline the Ex-PRESS miniature glaucoma implant in the anterior segment of the ex-vivo porcine eye by using an experimental OCT setup built onto a slitlamp. The acquisition time of 0.8 s is short enough to allow for the scanning of patients, and anterior segment OCT is expected to aid in providing answers to the question regarding which parameters will determine the success or failure of such a device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brown JC, Solomon SD, Bressler SB, Schachat AP, DiBernardo C, Bressler NM (2004) Detection of diabetic foveal edema: contact lens biomicroscopy compared with optical coherence tomography. Arch Ophthalmol 122:330–335

    Article  PubMed  Google Scholar 

  2. Browning DJ, McOwen MD, Bowen RM Jr, O’Marah TL (2004) Comparison of the clinical diagnosis of diabetic macular edema with diagnosis by optical coherence tomography. Ophthalmology 111:712–715

    Article  PubMed  Google Scholar 

  3. Gurses-Ozden R, Teng C, Vessani R, Zafar S, Liebmann JM, Ritch R (2004) Macular and retinal nerve fiber layer thickness measurement reproducibility using optical coherence tomography (OCT-3). J Glaucoma 13:238–244

    Article  PubMed  Google Scholar 

  4. Ikuno Y, Sayanagi K, Ohji M, Kamei M, Gomi F, Harino S, Fujikado T, Tano Y (2004) Vitrectomy and internal limiting membrane peeling for myopic foveoschisis. Am J Ophthalmol 137:719–724

    Article  PubMed  Google Scholar 

  5. Jaffe GJ, Caprioli J (2004) Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 137:156–169

    Article  PubMed  Google Scholar 

  6. Mori K, Gehlbach PL, Sano A, Deguchi T, Yoneya S (2004) Comparison of epiretinal membranes of differing pathogenesis using optical coherence tomography. Retina 24:57–62

    Article  PubMed  Google Scholar 

  7. Nouri-Mahdavi K, Hoffman D, Tannenbaum DP, Law SK, Caprioli J (2004) Identifying early glaucoma with optical coherence tomography. Am J Ophthalmol 137:228–235

    Article  PubMed  Google Scholar 

  8. Panozzo G, Gusson E, Parolini B, Mercanti A (2003) Role of OCT in the diagnosis and follow up of diabetic macular edema. Semin Ophthalmol 18:74–81

    PubMed  Google Scholar 

  9. Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, Wollstein G, Fujimoto JG (2004) Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest Ophthalmol Vis Sci 45:1716–1724

    Article  PubMed  Google Scholar 

  10. Voo I, Mavrofrides EC, Puliafito CA (2004) Clinical applications of optical coherence tomography for the diagnosis and management of macular diseases. Ophthalmol Clin North Am 17:21–31

    Article  PubMed  Google Scholar 

  11. Yannuzzi LA, Ober MD, Slakter JS, Spaide RF, Fisher YL, Flower RW, Rosen R (2004) Ophthalmic fundus imaging: today and beyond. Am J Ophthalmol 137:511–524

    Article  PubMed  Google Scholar 

  12. Hoerauf H, Gordes RS, Scholz C, Wirbelauer C, Koch P, Engelhardt R, Winkler J, Laqua H, Birngruber R (2000) First experimental and clinical results with transscleral optical coherence tomography. Ophthalmic Surg Lasers 31:218–222

    CAS  PubMed  Google Scholar 

  13. Hoerauf H, Wirbelauer C, Scholz C, Engelhardt R, Koch P, Laqua H, Birngruber R (2000) Slit-lamp-adapted optical coherence tomography of the anterior segment. Graefes Arch Clin Exp Ophthalmol 238:8–18

    Article  CAS  PubMed  Google Scholar 

  14. Hoerauf H, Scholz C, Koch P, Engelhardt R, Laqua H, Birngruber R (2002) Transscleral optical coherence tomography: a new imaging method for the anterior segment of the eye. Arch Ophthalmol 120:816–819

    PubMed  Google Scholar 

  15. Hoerauf H, Winkler J, Scholz C, Wirbelauer C, Gordes RS, Koch P, Engelhardt R, Laqua H, Birngruber R (2002) Transscleral optical coherence tomography—an experimental study in ex-vivo human eyes. Lasers Surg Med 30:209–215

    Article  PubMed  Google Scholar 

  16. Izatt JA, Hee MR, Swanson EA, Lin CP, Huang D, Schuman JS, Puliafito CA, Fujimoto JG (1994) Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol 112:1584–1589

    CAS  PubMed  Google Scholar 

  17. Guerrero AH, Latina MA (2000) Complications of glaucoma drainage implant surgery. Int Ophthalmol Clin 40:149–163

    CAS  PubMed  Google Scholar 

  18. Whitson JT (1999) Recent developments in glaucoma drainage implant surgery. Int Ophthalmol Clin 39:43–55

    CAS  PubMed  Google Scholar 

  19. Assaad MH, Baerveldt G, Rockwood EJ (1999) Glaucoma drainage devices: pros and cons. Curr Opin Ophthalmol 10:147–153

    Article  CAS  PubMed  Google Scholar 

  20. Nyska A, Glovinsky Y, Belkin M, Epstein Y (2003) Biocompatibility of the Ex-PRESS miniature glaucoma drainage implant. J Glaucoma 12:275–280

    Article  PubMed  Google Scholar 

  21. Cilesiz I, Fockens P, Kerindongo R, Faber D, Tytgat G, Ten Kate F, Van Leeuwen T (2002) Comparative optical coherence tomography imaging of human esophagus: how accurate is localization of the muscularis mucosae? Gastrointest Endosc 56:852–857

    Article  PubMed  Google Scholar 

  22. Rollins A, Kulkarni MD, Yazdanfar S, Ung-Arunyawee R, Izatt JA (1998) In vivo video rate optical coherence tomography. Optics Expr 3:219–229

    Google Scholar 

  23. Baikoff G, Lutun E, Ferraz C, Wei J (2004) Static and dynamic analysis of the anterior segment with optical coherence tomography. J Cataract Refract Surg 30:1843–1850

    Article  PubMed  Google Scholar 

  24. Huang D, Li Y, Radhakrishnan S (2004) Optical coherence tomography of the anterior segment of the eye. Ophthalmol Clin North Am 17:1–6

    Article  CAS  PubMed  Google Scholar 

  25. Bechmann M, Thiel MJ, Neubauer AS, Ullrich S, Ludwig K, Kenyon KR, Ulbig MW (2001) Central corneal thickness measurement with a retinal optical coherence tomography device versus standard ultrasonic pachymetry. Cornea 20:50–54

    Article  CAS  PubMed  Google Scholar 

  26. Muscat S, McKay N, Parks S, Kemp E, Keating D (2002) Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography. Invest Ophthalmol Vis Sci 43:1791–1795

    PubMed  Google Scholar 

  27. Wang J, Thomas J, Cox I, Rollins A (2004) Noncontact measurements of central corneal epithelial and flap thickness after laser in situ keratomileusis. Invest Ophthalmol Vis Sci 45:1812–1816

    Article  PubMed  Google Scholar 

  28. Wirbelauer C, Scholz C, Hoerauf H, Pham DT, Laqua H, Birngruber R (2002) Noncontact corneal pachymetry with slit lamp-adapted optical coherence tomography. Am J Ophthalmol 133:444–450

    Article  PubMed  Google Scholar 

  29. Brandt JD, Beiser JA, Gordon MO, Kass MA (2004) Central corneal thickness and measured IOP response to topical ocular hypotensive medication in the Ocular Hypertension Treatment Study. Am J Ophthalmol 138:717–722

    Article  PubMed  Google Scholar 

  30. Meyer CH, Sekundo W (2004) Evaluation of granular corneal dystrophy with optical coherent tomography. Cornea 23:270–271

    Article  PubMed  Google Scholar 

  31. Wirbelauer C, Winkler J, Bastian GO, Haberle H, Pham DT (2002) Histopathological correlation of corneal diseases with optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 240:727–734

    PubMed  Google Scholar 

  32. Wirbelauer C, Pham DT (2004) Imaging and quantification of calcified corneal lesions with optical coherence tomography. Cornea 23:439–442

    Article  PubMed  Google Scholar 

  33. Thompson RW Jr, Choi DM, Price MO, Potrezbowski L, Price FW Jr (2003) Noncontact optical coherence tomography for measurement of corneal flap and residual stromal bed thickness after laser in situ keratomileusis. J Refract Surg 19:507–515

    PubMed  Google Scholar 

  34. Ustundag C, Bahcecioglu H, Ozdamar A, Aras C, Yildirim R, Ozkan S (2000) Optical coherence tomography for evaluation of anatomical changes in the cornea after laser in situ keratomileusis. J Cataract Refract Surg 26:1458–1462

    Article  CAS  PubMed  Google Scholar 

  35. Wirbelauer C, Scholz C, Hoerauf H, Engelhardt R, Birngruber R, Laqua H (2000) Corneal optical coherence tomography before and immediately after excimer laser photorefractive keratectomy. Am J Ophthalmol 130:693–699

    Article  CAS  PubMed  Google Scholar 

  36. Wirbelauer C, Scholz C, Haberle H, Laqua H, Pham DT (2002) Corneal optical coherence tomography before and after phototherapeutic keratectomy for recurrent epithelial erosions(2). J Cataract Refract Surg 28:1629–1635

    Article  PubMed  Google Scholar 

  37. Wirbelauer C and Pham DT (2003) Intraoperative optical coherence pachymetry during laser in situ keratomileusis—first clinical experience. J Refract Surg 19:372–377

    PubMed  Google Scholar 

  38. Lowder CY, Li Y, Perez VL, Huang D (2004) Anterior chamber cell grading with high-speed optical coherence tomography. Invest Ophthalmol Vis Sci 45:3372

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. D. Verbraak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbraak, F.D., Bruin, D.M.d., Sulak, M. et al. Optical coherence tomography of the Ex-PRESS miniature glaucoma implant. Lasers Med Sci 20, 41–44 (2005). https://doi.org/10.1007/s10103-005-0334-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-005-0334-1

Keywords

Navigation