Skip to main content

Advertisement

Log in

Fuzzy analytic hierarchy process (FAHP) for multi-criteria selection of microalgae harvesting and drying processes

  • OriginalPaper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Microalgae are considered to be a promising source of biomass compared with first and second generation feedstocks. However, the high energy requirement for harvesting and drying of the algal biomass poses challenge to commercialization due to implications on both carbon footprint (CF) and cost. In this work, we propose a systematic methodology for the multi-criteria evaluation of alternatives for the harvesting and drying processes. A fuzzy analytic hierarchy process (FAHP) approach is used, where the pairwise comparison of the multiple criteria and alternatives were done to prioritize the best harvesting and drying method within the fuzzy bounds of the value judgment that satisfies the consistency index. FAHP also allows the degree of confidence of the expert to be quantified. A case study of four alternatives each for the harvesting and drying process is used to demonstrate the process. Technology capability, cost and environmental impacts (comprised CF, land footprint and water footprint) are identified as the selection criteria for harvesting and drying process, respectively. Results show that flotation is the best alternative for harvesting process, while sun drying is the best among the drying alternatives. Sensitivity analysis is used to give insights on the robustness of the decision model and enables the understanding of critical criteria that would significantly influence the ranking of the alternatives. The proposed FAHP approach therefore can effectively deal with the uncertainty of judgment in the decision-making process in the evaluation of microalgae harvesting and drying processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barros AL, Gonçalves AL, Simões M, Pires JC (2015) Harvesting techniques applied to microalgae: a review. Renew Sustain Energy Rev 41:1489–1500

    Article  Google Scholar 

  • Beach ES, Eckelman MJ, Zheng CZ, Brentner L, Zimmerman JB (2012) Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans. Bioresour Technol 121:445–449

    Article  CAS  Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology, vol 10. Cambridge University Press, Cambridge

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Chen P, Min M, Chen Y, Wang L, Li Y, Chen Q, Wang C, Wan Y, Wang X, Cheng Y, Deng S, Hennessy K, Lin X, Liu Y, Wang Y, Martinez B, Ruan R (2010) Review of biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng 2(4):1–30

    Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  Google Scholar 

  • Connell DO, Savelski M, Slater CS (2013) Life cycle assessment of dewatering routes for algae derived biodiesel processes. Clean Technol Environ Policy 15:567–577

    Article  Google Scholar 

  • Čuček L, Klemeš JJ, Kravanja Z (2012) A review of footprint analysis tools for monitoring impacts on sustainability. J Clean Prod 34:9–20

    Article  Google Scholar 

  • Čuček L, Klemeš JJ, Varbanov PS, Kravanja Z (2013) Dealing with high-dimensionality of criteria in multi-objective optimization of biomass energy supply network. Ind Eng Chem Res 52:7223–7239

    Article  Google Scholar 

  • Čuček L, Klemeš JJ, Kravanja Z (2014) Objective dimensionality reduction method within multi-objective optimisation considering total footprints. J Clean Prod 71:75–86

    Article  Google Scholar 

  • Čuček L, Klemeš JJ, Kravanja Z (2015a) Overview of environmental footprints. In: Klemeš JJ (ed) Assessing and measuring environmental impact and sustainability. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Čuček L, Klemeš JJ, Varbanov PS, Kravanja Z (2015b) Significance of environmental footprints for evaluating sustainability and security of development. Clean Technol Environ Policy 17(8):2125–2141

    Article  Google Scholar 

  • De Benedetto L, Klemeš JJ (2009) The environmental performance strategy map: an integrated LCA approach to support decision-making process. J Clean Prod 17:900–906

    Article  Google Scholar 

  • De Benedetto L, Klemeš JJ (2010) The environmental bill of material and technology routing: an integrated LCA approach. Clean Technol Environ Policy 12:191–196

    Article  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manag 51:2738–2749

    Article  CAS  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170

    Article  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  Google Scholar 

  • Garg S, Li Y, Wang L, Schenk PM (2012) Flotation of marine microalgae: effect of algal hydrophobicity. Bioresour Technol 121:471–474

    Article  CAS  Google Scholar 

  • Geldermann J, Spengler T, Rentz O (2000) Fuzzy outranking for environmental assessment. Case study: iron and steel making industry. Fuzzy Sets Syst 115(1):45–65

    Article  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726

    Article  CAS  Google Scholar 

  • Grima EM, Fernandez FGA, Medina RA, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7):491–515

    Article  Google Scholar 

  • Grima EM, Fernandez FGA, Medina RA (2004) Downstream processing of cell-mass and products. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Bodmin, pp 215–252

    Google Scholar 

  • Guldhe A, Singh B, Rawat I, Ramluckan K, Bux F (2014) Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel 128:46–52

    Article  CAS  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047

    Article  CAS  Google Scholar 

  • Haveren JV, Scott LE, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Biorefin 2(1):41–57

    Article  Google Scholar 

  • IEA Bioenergy (2008) From 1st to 2nd generation biofuel technologies: an overview of current industry and RD & D activities. IEA/OECD, Paris

  • Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    Article  CAS  Google Scholar 

  • Larkum AWD, Ross IL, Kruse O, Hankamer B (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 3(4):198–205

    Article  Google Scholar 

  • Liew WH, Hassim MH, Ng DKS (2013) Screening of sustainable biodiesel production pathways during process research and development (R&D) stage using fuzzy optimization. Chem Eng Trans 35:1075–1080

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Milledge JJ, Heaven S (2012) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12(2):165–178

    Article  Google Scholar 

  • Mohn HF (1988) Harvesting of microalgal biomass. In: Borowitzka LJ, Borowitzka MA (eds) Microalgal biotechnology. Cambridge University Press, Cambridge

    Google Scholar 

  • Nindo CI, Tang J (2007) Refractance window dehydration technology: a novel contact drying method. Drying Technol 25(1):37–48

    Article  CAS  Google Scholar 

  • Noh J, Lee KM (2003) Application of multiattribute decision-making methods for the determination of relative significance factor of impact categories. Environ Manag 31(5):633–641

    Article  Google Scholar 

  • Promentilla MAB, Furuichi T, Ishii K, Tanikawa N (2008) A fuzzy analytic network process for multi-criteria evaluation of contaminated site remedial countermeasures. J Environ Manag 88(3):479–495

    Article  Google Scholar 

  • Promentilla MAB, Aviso KB, Tan RR (2014) A group fuzzy analytic network process to prioritize low carbon energy systems in the Philippines. Energy Procedia 61:808–811

    Article  Google Scholar 

  • Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 21(3):686–697

    Article  Google Scholar 

  • Razon LF (2012) Life cycle energy and greenhouse gas profile of a process for the production of ammonium sulfate from nitrogen-fixing photosynthetic cyanobacteria. Bioresour Technol 107:339–346

    Article  CAS  Google Scholar 

  • Razon LF (2014) Life cycle analysis of an alternative to the Haber-Bosch process: non-renewable energy usage and global warming potential of liquid ammonia from cyanobacteria. Environ Prog Sustain Energy 33:618–624

    Article  CAS  Google Scholar 

  • Razon LF (2015) Is nitrogen fixation (once again) “vital to the progress of civilized humanity?”. Clean Technol Environ Policy 17:301–307

    Article  CAS  Google Scholar 

  • Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88:3507–3514

    Article  CAS  Google Scholar 

  • Rosegrant MW, Zhu T, Msangi S, Sulser T (2008) Global scenarios for biofuels: impacts and implications. Appl Econ Perspect Policy 30(3):495–505

    Google Scholar 

  • Saaty TL (1979) Applications of analytical hierarchies. Math Comput Simul 21(1):1–20

    Article  Google Scholar 

  • Sharma KK, Garg S, Li Y, Malekizadeh A, Schenk PM (2013) Critical analysis of current microalgae dewatering techniques. Biofuels 4(4):397–407

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae: close-out report National Renewable Energy Laboratory. Golden

  • Shelef G, Sukenik A, Green M (1984) Microalgae harvesting and processing: a literature review. No. SERI/STR-231-2396. Technion Research and Development Foundation Ltd., Haifa

  • Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialization of algal biofuels. Bioresour Technol 102:26–34

    Article  CAS  Google Scholar 

  • Soeder CJ (1980) Massive cultivation of microalgae: results and prospects. Hydrobiologia 72:197–209

    Article  CAS  Google Scholar 

  • Svarovsky L (1979) Advanced in solid–liquid separation II sedimentation, centrifugation and flotation. Chem Eng 16:43–105

    Google Scholar 

  • Tan J, Sulaiman NN, Tan RR, Aviso KB, Promentilla MAB (2014a) A hybrid life cycle optimization model for different microalgae cultivation systems. Energy Procedia 61:299–302

    Article  Google Scholar 

  • Tan RR, Aviso KB, Huelgas AP, Promentilla MAB (2014b) Fuzzy AHP approach to selection problems in process engineering involving quantitative and qualitative aspects. Process Saf Environ Prot 92:467–475

    Article  CAS  Google Scholar 

  • Tang J, Feng H, Shen GQ (2003) Drum drying. In: Heldman DR (ed) Encyclopedia of agricultural, food, and biological engineering. Marcel Dekker, New York, pp 211–214

    Google Scholar 

  • Ubando AT, Cuello JL, El-Halwagi MM, Culaba AB, Promentilla MAB, Tan RR (2016) Application of stochastic analytic hierarchy process for evaluating algal cultivation systems for sustainable biofuel production. Clean Technol Environ Policy. doi:10.1007/s10098-015-1073-z

    Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2(1):012701

    Article  Google Scholar 

  • Vaidya O, Kumar S (2006) Analytic hierarchy process: an overview of applications. Eur J Oper Res 169(1):1–29

    Article  Google Scholar 

  • Vandamme D, Foubert I, Meesschaert B, Muylaert K (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22(4):525–530

    Article  Google Scholar 

  • Vasumathi KK, Premalatha M, Subramanian P (2012) Parameters influencing the design of photobioreactor for the growth of microalgae. Renew Sustain Energy Rev 16:5443–5450

    Article  CAS  Google Scholar 

  • Wiley PE, Brenneman KJ, Jacobson AE (2009) Improved algal harvesting using suspended air flotation. Water Environ Res 81(7):702–708

    Article  CAS  Google Scholar 

  • Xu L, Brilman DWF, Withag JAM, Brem G, Kersten S (2011) Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Bioresour Technol 102(8):5113–5122

    Article  CAS  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  • Zhang X, Rong J, Chen H, He C, Wang Q (2014) Current status and outlook in the application of microalgae in biodiesel production and environmental protection. Front Energy Res 2:1–15

    Google Scholar 

  • Zhu KJ, Jing Y, Chang DY (1999) A discussion on extent analysis method and applications of fuzzy AHP. Eur J Oper Res 116:450–456

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the UCSI University under project funding Proj-In-FETBE-015. The authors would like to thank Dr. Chin Siew Kian for providing domain expert inputs in the AHP survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nik Meriam Nik Sulaiman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Low, K.Y., Sulaiman, N.M.N. et al. Fuzzy analytic hierarchy process (FAHP) for multi-criteria selection of microalgae harvesting and drying processes. Clean Techn Environ Policy 18, 2049–2063 (2016). https://doi.org/10.1007/s10098-016-1163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1163-6

Keywords

Navigation