Skip to main content

Advertisement

Log in

Detailed plant layout studies of oxy-enriched CO2 pulverized coal combustion-based power plant with CO2 enrichment

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Coal plays a vital role in electricity generation worldwide and is expected to contribute significantly to thermal power generation for the foreseeable future, especially in countries such as India. Carbon capture and sequestration technologies therefore become imperative in order to minimize CO2 emissions. A systematic and comprehensive assessment of the most promising of these technologies—consisting of supercritical boiler parameters, oxy-coal combustion, and low temperature flashing for simultaneous CO2 and SO2 capture—for typical Indian environmental and fuel conditions has been carried out in the present study. The results show that up to 93.3 % of CO2 and 95 % of SO2 generated during combustion can be captured while producing a sequestration-ready CO2 stream of 95.5 mol% purity compressed to a supercritical pressure of 110 bar. The energy penalty for this suite of technologies amounts to about 8.5 % drop in the net power plant efficiency to 33 % despite adopting efficiency measures such as supercritical boiler technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aspen Plus (2015) Aspen Plus V8.4, Aspen Technology Inc. (www.aspentech.com)

  • Basavaraj RJ, Jayanti S (2015) Comparative analysis of four gas-fired, carbon capture-enabled power plant layouts. Clean Technol Environ Policy 17(8):2143–2156

    Article  Google Scholar 

  • Basavaraja RJ, Jayanti S (2015) Syngas-fueled, chemical-looping combustion-based power plant lay-out for clean energy generation. Clean Technol Environ Policy 17(1):237–247

    Article  Google Scholar 

  • Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF (2005) Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci 31:283–307

    Article  CAS  Google Scholar 

  • CEA, India (2015). http://www.cea.nic.in/ reports/monthly/executivesummary/2015/exe_summary-08.pdf

  • Chen L, Yong SZ, Ghoniem AF (2010) Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling. Prog Energy Combust Sci 38:156–214

    Article  Google Scholar 

  • Cycle-Tempo (2015) Cycle-Tempo Release 5.1. http://www.asimptote.nl/software/cycle-tempo/

  • Damartzis T, Papadopoulos AI, Seferlis P (2014) Optimum synthesis of solvent-based post-combustion CO2 capture flow sheets through a generalized modeling framework. Clean Technol Environ Policy 16(7):1363–1380

    Article  CAS  Google Scholar 

  • Finkenrath M (2011) Cost and performance of carbon dioxide capture from power generation. International Energy Agency, Paris

    Book  Google Scholar 

  • Hetland J (2009) Assessment of pre-combustion decarbonisation schemes for polygeneration from fossil fuels. Clean Technol Environ Policy 11(1):37–48

    Article  CAS  Google Scholar 

  • Horn FL, Steinberg M (1982) Control of carbon dioxide emissions from a power plant (and use in enhanced oil recovery). Fuel 61(5):415–422

    Article  CAS  Google Scholar 

  • Hu Y, Li H, Yan J (2010) Integration of evaporative gas turbine with oxy-fuel combustion for carbon dioxide capture. Int J Green Energy 7(6):615–631

    Article  CAS  Google Scholar 

  • Huang Y, Liu L, Ma XM, Pan XF (2014) Abatement technology investment and emissions trading system: a case of coal-fired power industry of Shenzhen, China. Clean Technol and Environ Policy. doi:10.1007/s10098-014-0854-0

    Google Scholar 

  • IEA (2013) Key world energy statistics. International Energy Agency, Paris

    Google Scholar 

  • Jayanti S, Saravanan V, Sivaji S (2012) Assessment of retrofitting possibility of an Indian pulverized coal boiler for operation with Indian coals in oxy-coal combustion mode with CO2 sequestration. Proc I Mech E Part A: J Power Energy 226:1003–1013

    Article  CAS  Google Scholar 

  • Jenni KE, Baker ED, Nemet JF (2013) Expert elicitations of energy penalties for carbon capture technologies. Int J Greenh Gas Control 12:136–145

    Article  CAS  Google Scholar 

  • Kanniche M, Gros-Bonnivard R, Jaud P et al (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62

    Article  CAS  Google Scholar 

  • Naidu VS, Aghalayam P, Jayanti S (2015) Evaluation of CO2 gasification kinetics for low-rank coals and biomass fuels. J Therm Anal Calorim. doi:10.1007/s10973-015-4930-4

    Google Scholar 

  • Okazaki K, Ando T (1997) NOx reduction mechanism in coal combustion with recycled CO2. Energy 22(2/3):207–215

    Article  CAS  Google Scholar 

  • ONGC, India (2015). http://www.ongcindia.com/wps/wcm/OngcHTML/ Annual_Report_2014_15/management_discussion_&_analysis_report.html

  • Pipitone G, Bolland O (2009) Power generation with CO2 capture: technology for CO2 purification. Int J Greenh Gas Control 3:528–534

    Article  CAS  Google Scholar 

  • Reddy VS, Kaushik SC, Tyagi SK (2014) Exergetic analysis and evaluation of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant. Clean Technol Environ Policy 16:489–499

    Article  CAS  Google Scholar 

  • Singh D, Croiset E, Douglas PL, Douglas MA (2003) Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Convers Manag 44:3073–3091

    Article  CAS  Google Scholar 

  • Singh RK, Murthy HR, Gupta SK, Dikshit AK (2012) An overview of sustainability assessment methodologies. Ecol Indic 15(1):281–299

    Article  Google Scholar 

  • Sivaji S, Jayanti S (2012) Optimized enriched-CO2 recycle oxy-fuel combustion for high ash coals. Fuel 102:32–40

    Article  Google Scholar 

  • Skorek-Osikowska A, Bartela L, Kotowicz J, Job M (2013) Thermodynamic and economic analysis of the different variants of a coal-fired, 460 MW power plant using oxy-combustion technology. Energy Convers Manag 76:109–120

    Article  CAS  Google Scholar 

  • Soundararajan R, Gundersen T (2013) Coal based power plants using oxy-combustion for CO2 capture: pressurized coal combustion to reduce capture penalty. Appl Therm Eng 61:115–122

    Article  CAS  Google Scholar 

  • Suresh MNJJ, Reddy KS, Kolar AK (2011) Thermodynamic optimization of advanced steam power plants retrofitted for oxy-coal combustion. J Eng Gas Turbines Power 133:063001-1–06300111

    Article  Google Scholar 

  • UNFCCC (2015). http://www4.unfccc.int/ submissions/INDC/Published%20Documents/India/1/INDIA%20INDC%20TO%20UNFCCC.pdf

  • Wall TF (2007) Combustion processes for carbon capture. Proc Combust Inst 31:31–47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jayanti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayanti, S., Kareemulla, D. Detailed plant layout studies of oxy-enriched CO2 pulverized coal combustion-based power plant with CO2 enrichment. Clean Techn Environ Policy 18, 1985–1996 (2016). https://doi.org/10.1007/s10098-016-1125-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1125-z

Keywords

Navigation