Skip to main content

Advertisement

Log in

A new graphical representation of water footprint pinch analysis for chemical processes

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Water resource conservation and wastewater minimization are important strategies for the chemical industry. In this work, a graphical technique established for carbon footprint reduction is extended for the analysis of water footprint reduction. Similar to its original variant, this extended water footprint pinch analysis technique is based on the decomposition of total water footprint into external and internal footprint components. A case study on coal-to-methanol process is used to illustrate the proposed technique. Results show that water is mainly consumed in the utility processes and it is possible to achieve a goal for water saving of 16 %. Several practical water saving measurements are suggested to achieve the water reduction target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkins MJ, Morrison AS, Walmsley MRW (2010) Carbon emissions pinch analysis (CEPA) for emissions reduction in the New Zealand electricity sector. Appl Energy 87(3):982–987

    Article  Google Scholar 

  • Bandyopadhyay S (2011) Design and optimization of isolated energy systems through pinch analysis. Asia-Pac J Chem Eng 6(3):518–526

    Article  CAS  Google Scholar 

  • China’s State Council (2006). National program for medium-to-long-term scientific and technological development (2006–2020). www.gov.cn/jrzg/2006-02/09/content_183787_3.htm. Accessed 30 Oct 2014

  • Crilly D, Zhelev T (2008) Emissions targeting and planning: an application of CO2 emissions pinch analysis (CEPA) to the Irish electricity generation sector. Energy 33(10):1498–1507

    Article  CAS  Google Scholar 

  • Čuček L, Klemeš JJ, Kravanja Z (2012) A review of footprint analysis tools for monitoring impacts on sustainability. J Clean Prod 34:9–20

    Article  Google Scholar 

  • Čuček L, Klemeš JJ, Kravanja Z (2014) Objective dimensionality reduction method within multi-objective optimisation considering total footprints. J Clean Prod 71:75–86

    Article  Google Scholar 

  • Diamante JAR, Tan RR, Foo DCY, Ng DKS, Aviso KB, Bandyopadhyay S (2014) Unified pinch approach for targeting of carbon capture and storage (CCS) systems with multiple time periods and regions. J Clean Prod 71:67–74

    Article  CAS  Google Scholar 

  • El-Halwagi MM (2012) Sustainable design through process integration: fundamentals and applications to industrial pollution prevention, resource conservation, and profitability enhancement. Butterworth-Heinemann, London

    Google Scholar 

  • El-Halwagi MM, Manousiouthakis V (1989) Synthesis of mass exchange networks. AIChE J 35(8):1233–1244

    Article  CAS  Google Scholar 

  • Foo DCY (2012) Process integration for resource conservation. CRC Press, Boca Raton

    Google Scholar 

  • Gerbens-Leenes W, Hoekstra A, Meer T (2007) The water footprint of energy consumption: an assessment of water requirements of primary energy carriers. ISESCO Sci Technol Vis 4(5):38–42

    Google Scholar 

  • Ho WS, Khor CS, Hashim H, Macchietto S, Klemeš JJ (2014) SAHPPA: a novel power pinch analysis approach for the design of off-grid hybrid energy systems. Clean Technol Environ Policy 16(5):957–970

    Article  Google Scholar 

  • Jia XP, Liu CH, Qian Y (2009) Carbon emission pinch analysis for energy planning in chemical industrial park. Mod Chem Ind 29(9):81–85

    Google Scholar 

  • Jin ZL, Chen XT, Wang YQ, Liu MS (2013) Heat exchanger network synthesis based on environmental impact minimization. Clean Technol Environ Policy 16(1):183–187

    Article  Google Scholar 

  • Kazantzi V, El-Halwagi MM (2005) Targeting material reuse via property integration. Chem Eng Prog 101(8):28–37

    CAS  Google Scholar 

  • Klemeš JJ (2013) Handbook of process integration (PI): minimisation of energy and water use, waste and emissions. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  • Klemeš JJ, Varbanov PS (2013) Process Intensification and Integration: an assessment. Clean Technol Environ Policy 15(3):417–422

    Article  Google Scholar 

  • Lam HL, Varbanov P, Klemeš J (2010) Minimising carbon footprint of regional biomass supply chains. Resour Conserv Recycl 54(5):303–309

    Article  Google Scholar 

  • Linnhoff B, Hindmarsh E (1983) The pinch design method for heat exchanger networks. Chem Eng Sci 38(5):745–763

    Article  CAS  Google Scholar 

  • Luo T, Otto B, Shiao T, Maddocks A (2014) Identifying the global coal industry’s water risks. Cornerstone 2(1):26–31

    Google Scholar 

  • Ooi REH, Foo DCY, Tan RR (2014) Targeting for carbon sequestration retrofit planning in the power generation sector for multi-period problems. Appl Energy 113:477–487

    Article  CAS  Google Scholar 

  • Pan L, Liu P, Ma L, Li Z (2012) A supply chain based assessment of water issues in the coal industry in China. Energy Policy 48:93–102

    Article  Google Scholar 

  • Pękala ŁM, Tan RR, Foo DCY, Jeżowski JM (2010) Optimal energy planning models with carbon footprint constraints. Appl Energy 87(6):1903–1910

    Article  Google Scholar 

  • Priya GSK, Bandyopadhyay S (2012) Emission constrained power system planning: a pinch analysis based study of Indian electricity sector. Clean Technol Environ Policy 15(5):771–782

    Article  Google Scholar 

  • Shenoy UV (2010) Targeting and design of energy allocation networks for carbon emission reduction. Chem Eng Sci 65(23):6155–6168

    Article  CAS  Google Scholar 

  • Shenoy AU, Shenoy UV (2012) Targeting and design of energy allocation networks with carbon capture and storage. Chem Eng Sci 68(1):313–327

    Article  CAS  Google Scholar 

  • Singhvi A, Shenoy UV (2002) Aggregate planning in supply chains by pinch analysis. Chem Eng Res Des 80(6):597–605

    Article  CAS  Google Scholar 

  • Smith R (2005) Chemical process design and integration. Wiley, New York

    Google Scholar 

  • Tahara K, Sagisaka M, Ozawa T, Yamaguchi K, Inaba A (2005) Comparison of “CO2 efficiency” between company and industry. J Clean Prod 13(13–14):1301–1308

    Article  Google Scholar 

  • Tan RR, Foo DCY (2007) Pinch analysis approach to carbon-constrained energy sector planning. Energy 32(8):1422–1429

    Article  Google Scholar 

  • Tan RR, Foo DCY, Aviso KB, Ng DKS (2009) The use of graphical pinch analysis for visualizing water footprint constraints in biofuel production. Appl Energy 86(5):605–609

    Article  CAS  Google Scholar 

  • Tjan W, Tan RR, Foo DCY (2010) A graphical representation of carbon footprint reduction for chemical processes. J Clean Prod 18(9):848–856

    Article  CAS  Google Scholar 

  • Varbanov PS, Seferlis P (2014) Process innovation through integration approaches at multiple scales: a perspective. Clean Technol Environ Policy 16(7):1229–1234

    Article  Google Scholar 

  • Walmsley MRW, Walmsley TG, Atkins MJ, Kamp PJJ, Neale JR (2014) Minimising carbon emissions and energy expended for electricity generation in New Zealand through to 2050. Appl Energy 135:656–665

    Article  Google Scholar 

  • Wan Alwi SR, Tin OS, Rozali NEM, Manan ZA, Klemeš JJ (2013) New graphical tools for process changes via load shifting for hybrid power systems based on power pinch analysis. Clean Technol Environ Policy 15(3):459–472

    Article  Google Scholar 

  • Wang YP, Smith R (1994) Wastewater minimisation. Chem Eng Sci 49(7):981–1006

    Article  CAS  Google Scholar 

  • Xie K, Li W, Zhao W (2010) Coal chemical industry and its sustainable development in China. Energy 35(11):4349–4355

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article is financially supported by National Natural Science Foundation of China (nos. 41101570 and 21136003) and The National Key Technology R&D Program (No. 2011BAC06B13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Jia or Dominic C. Y. Foo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Li, Z., Wang, F. et al. A new graphical representation of water footprint pinch analysis for chemical processes. Clean Techn Environ Policy 17, 1987–1995 (2015). https://doi.org/10.1007/s10098-015-0921-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0921-1

Keywords

Navigation