Skip to main content
Log in

Polystyrene pyrolysis using silica-alumina catalyst in fluidized bed reactor

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Catalytic degradation of polystyrene (PS) at ambient pressure was investigated in this study. Samples of PS and catalyst were mixed in a semi-batch reactor. Experiments were carried out in a Pyrex reactor in different conditions, taking temperature and catalyst/PS mass ratio as variables to determine the kinetic parameters. The results indicated that increasing the temperature causes conversion increase. The products of the degradation mostly consist of liquid, gas, and solid residue. The pyrolysis of PS was examined as an effective way to recycle this polymer and recover its styrene monomer. Based on the weight loss of polymer sample, the reaction kinetic parameters are calculated and discussed in the paper. In addition, the effects of temperature and catalyst/polymer ratio were examined, comparing its result to the gaseous and liquid pyrolysis products. Since the oil product contained a high percentage of styrene monomer (>80 %), it is possible to use it directly for the reproduction of the polymer. The experiments indicated a unique catalytic performance for degradation of PS with selectivity to aromatics more than 99 %. The products contained styrene, as the major product, and ethyl benzene, indene, and propyl benzene to some amounts in the liquid. Order of reaction, pre-exponential factor and activation energies were determined using the nth order model technique method. According to the results E (activation energy) and A 0 (Pre-exponential factor) are as the following 1.1326, 194 (kJ mol−1) and 3.2668 × 1014 min−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Achilias DS, Kanellopoulou I, Megalokonomos P, Antonakou E, Lappas AA (2007) Chemical recycling of polystyrene by pyrolysis: potential use of the liquid product for the reproduction of polymer. Macromol Mater Eng 292(8):923–934

    Article  CAS  Google Scholar 

  • Anders G, Burkhardt I, Illgen U, Schulz IW, Scheve J (1990) The influence of HZSM-5 zeolite on the product composition after cracking of high boiling hydrocarbon fractions. Appl Catal 62(1):271–280

    Article  CAS  Google Scholar 

  • Anderson D, Freeman ES (1961) The kinetics of the thermal degradation of polystyrene and polyethylene. J Polym Sci 54(159):253–260

    Article  CAS  Google Scholar 

  • Armaroli T, Trombetta M, Alejandre AG, Solisb JR, Busca G (2000) FTIR study of the interaction of some branched aliphatic molecules with the external and internal sites of H-ZSM5 zeolite. Chem Phys Lett Chem Phys 2:3341

    Article  CAS  Google Scholar 

  • Audisio G, Bertini F, Beltrame PL, Carniti P (1990) Catalytic degradation of polymers: Part III—degradation of polystyrene. Polym Degrad Stab 29(2):191–200

    Article  CAS  Google Scholar 

  • Bagri R, Williams PT (2004) Hydrocarbon gases and oils from the recycling of polystyrene waste by catalytic pyrolysis. Energy 28:31–44

    Google Scholar 

  • Bazargan A, McKay G (2012) A review—synthesis of carbon nanotubes from plastic wastes. Chem Eng 196:377–391

    Article  Google Scholar 

  • Bockhorn H, Hornung A, Hornung U (1998a) Gasification of polystyrene as initial step in incineration, fires, or smoldering of plastics. Symposium (international) on Combustion, pp 1343–1349

  • Bockhorn H, Hornung A, Hornung U (1998b) Stepwise pyrolysis for raw material recovery from plastic waste. J Anal Appl Pyrol 46(1):1–13

    Article  CAS  Google Scholar 

  • Bockhorn H, Hentschel J, Hornung A, Hornung U (1999) Environmental engineering: stepwise pyrolysis of plastic waste. Chem Eng Sci 54(15):3043–3051

    Article  CAS  Google Scholar 

  • Bouster C, Vermande P, Veron J (1980) Study of the pyrolysis of polystyrenes: I. Kinetics of thermal decomposition. J Anal Appl Pyrol 1(4):297–313

    Article  CAS  Google Scholar 

  • Carniti P, Beltrame PL, Massimo A, Gervasini A, Audisio G (1991) PolyStyrene thermodegradation kinetics of formation of volatile products. Ind Eng Chem Res 30:1624–1629

    Article  CAS  Google Scholar 

  • De la Puente G, Sedran U (1998) Recycling polystyrene into fuels by means of FCC: performance of various acidic catalysts. Appl Catal B 19(3):305–311

    Article  Google Scholar 

  • Domingo V, Javier F (2008) Analytical strategies for the quality assessment of recycled high-impact polystyrene (HIPS)

  • Hirose T, Nishio S, Morioka Y, Azuma N, Ueno A, Ohkita H, Zhang MO (1995) Chemical recycling of waste polystyrene into styrene over solid acids and bases. Ind Eng Chem Res 34:4514–4519

    Article  Google Scholar 

  • Horvat N (1999) Tertiary polymer recycling: study of polyethylene thermolysis as a first step to synthetic diesel fuel. Fuel 78:459–470

    Article  CAS  Google Scholar 

  • Kaminsky W (1991) Recycling of polymeric materials by pyrolysis. In: Makromolekulare Chemie. Macromolecular Symposia, vol. 48, No. 1, Hüthig & Wepf Verlag¸ pp 381–393

  • Kaminsky W, Predel M, Sadiki A (2004) Feedstock recycling of polymers by pyrolysis in a fluidised bed. Polym Degrad Stab 85(3):1045–1050

    Article  CAS  Google Scholar 

  • Karaduman A (2002) Pyrolysis of polystyrene plastic wastes with some organic compounds for enhancing styrene yield. Energy Sources 24(7):667–674

    Article  CAS  Google Scholar 

  • Kim JS, Lee WY, Lee SB, Kim SB, Choi MJ (2003) Degradation of polystyrene waste over base promoted Fe catalysts. Catal Tod 87:59–68

    Article  CAS  Google Scholar 

  • Kiran N, Ekinci E, Snape CE (2000) Recyling of plastic wastes via pyrolysis. Resour Conserv Recycl 29(4):273–283

    Article  Google Scholar 

  • Kraines S, Shigeoka H, Komiyama H (2003) A system tradeoff model for processing options for household plastic waste. Clean Technol Environ Policy 4(4):204–216

    Article  Google Scholar 

  • Lee SY, Yoon JH, Kim JR, Park DW (2002) Degradation of polystyrene using clinoptilolite catalysts. J Anal Appl Pyrol 64(1):71–83

    Article  CAS  Google Scholar 

  • Liu Y, Qian J, Wang J (2000) Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction. Fuel Process Technol 63(1):45–55

    Article  CAS  Google Scholar 

  • Miskolczi N, Nagy R (2012) Hydrocarbons obtained by waste plastic pyrolysis: comparative analysis of decomposition described by different kinetic models. Fuel Process Technol 104:96–104

    Article  CAS  Google Scholar 

  • Ohkita H, Nishiyama R, Tochihara Y, Mizushima T, Kakuta N, Morioka Y, Ueno A, Namiki Y, Tanifuji S (1993) Acid properties of silica-alumina catalysts and catalytic degradation of polyethylene. Ind Eng Chem Res 32:3112–3116

    Article  CAS  Google Scholar 

  • Paradela F, Pinto F, Gulyurtlu I, Cabrita I, Lapa N (2009) Study of the co-pyrolysis of biomass and plastic wastes. Clean Technol Environ Policy 11(1):115–122

    Article  CAS  Google Scholar 

  • Roozbehani B, Anvaripour B, Esfahan ZM, Mirdrikvand M, Moqadam SI (2014) Effect of temperature and catalyst loading on product yield in catalytic cracking of high density polyethylene (HDPE). Chem Technol Fuels Oils 49(6):508–516

    Article  CAS  Google Scholar 

  • Sakaki SA, Roozbehani B, Shishesaz M, Abdollahkhani N (2014) Catalytic degradation of the mixed polyethylene and polypropylene into middle distillate products. Clean Technol Environ Policy 16(5):901–910

    Article  CAS  Google Scholar 

  • Sakata Y, Uddin MA, Muto A (1999) Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. Anal Appl Pyrol 51:135–155

    Article  CAS  Google Scholar 

  • Serrano DP, Aguado J, Escola JM (2000) Catalytic conversion of polystyrene over HMCM-41, HZSM-5 and amorphous SiO2–Al2O3: comparison with thermal cracking. Appl Catal B 25(2):181–189

    Article  CAS  Google Scholar 

  • Simard YDM, Kamal MR, Cooper DG (1995) Thermolysis of polystyrene. J Appl Polym Sci 58(5):843–851

    Article  CAS  Google Scholar 

  • Ukei H, Hirose T, Horikawa S, Takai Y, Taka M, Azuma N, Ueno A (2000) Catalytic degradation of polystyrene into styrene and a design of recyclable polystyrene with dispersed catalysts. Catal Tod 62:67–75

    Article  CAS  Google Scholar 

  • Venuto P, Landis P (1968) Zeolite catalysis in synthetic organic chemistry. Adv Catal 18:259

    CAS  Google Scholar 

  • Westerhout RWJ, Waanders J, Kuipers JAM, Van Swaaij WPM (1997) Kinetics of the low-temperature pyrolysis of polyethene, polypropene, and polystyrene modeling, experimental determination, and comparison with literature models and data. Ind Eng Chem Res 36(6):1955–1964

    Article  CAS  Google Scholar 

  • Williams PT, Williams EA (1999) Interaction of plastics in mixed-plastics pyrolysis. Energy Fuels 13(1):188–196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeedeh Imani Moqadam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imani Moqadam, S., Mirdrikvand, M., Roozbehani, B. et al. Polystyrene pyrolysis using silica-alumina catalyst in fluidized bed reactor. Clean Techn Environ Policy 17, 1847–1860 (2015). https://doi.org/10.1007/s10098-015-0899-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0899-8

Keywords

Navigation