Skip to main content
Log in

Nitrification and denitrification characteristics in a sequencing batch reactor treating tannery wastewater

  • Original paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Long-term evaluation of a SBR fed with tannery wastewater (SBRtww) was carried out to study the periods of satisfactory and unsatisfactory performance in the nitrification and denitrification properties. Another SBR fed with synthetic nitrogen medium simulating tannery wastewater (SBRsww) was used to assess separately the end points of nitritation and nitratation by online monitoring of pH and DO. Flex point in the DO and pH profiles of the SBRsww cycle corresponding to the end point of nitritation was well observed, whereas the end point of nitratation was vaguely detected. The end point of nitritation suggested that the aeration phase can be reduced considerably and denitrification via nitrite can be facilitated to minimize oxygen requirements and reduce operational costs. During the long-term operation of SBRtww, stable and unstable phases of nitrification were observed. A maximum nitrification rate of 14.1 mg/L h was obtained during the stable phase of the reactor. Inhibiting substances in tannery wastewater was found to be the possible reason for the instability in nitrification. Denitrification property, however, was not much affected as that of nitrification. The maximum denitrification rate observed was 10.7 mg/L h. Nitrogen removal in an aerobic SBR through simultaneous nitrification-–denitrification could be a good option for tannery wastewater. SBR is a viable option for tannery wastewater compared to the conventional aerobic systems provided pollution control measures are conducted at the source level through the use of eco-friendly chemicals and cleaner processing methods to avoid nitrification inhibiting compounds in the effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st ed., Washington DC, USA

  • Artan N, Wilderer PA, Orhan D, Morgenroth E, Ozgur N (2001) The mechanism and design of sequencing batch reactor system for nutrient removal – The state of the art. Water Sci Technol 43:53–61

    CAS  Google Scholar 

  • Banas J, Plaza E, Styka W, Trela J (1999) SBR technology used for advanced combined municipal and tannery wastewater treatment with high receiving standards. Wat Sci Technol 40:451–458. doi:10.1016/S0273-1223(99)00529-6

    Article  CAS  Google Scholar 

  • Bougard D, Bernet N, Cheneby D, Delgenes JP (2006) Nitrification of a high-strength wastewater in an inverse turbulent bed reactor: effect of temperature on nitrite accumulation. Process Biochem 41:106–113. doi:10.1016/j.procbio.2005.03.064

    Article  CAS  Google Scholar 

  • Brandt KK, Hesselsoe M, Roslev P, Henriksen K, Soyrensen J (2001) Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains. Appl Environ Microbiol 67:2489–2498. doi:10.1128/AEM.67.6.2489-2498.2001

    Article  CAS  Google Scholar 

  • Carucci A, Chiavola A, Majone M, Rolle E (1999) Treatment of tannery wastewater in a sequencing batch reactor. Water Sci Technol 40:253–259. doi:10.1016/S0273-1223(99)00392-3

    Article  CAS  Google Scholar 

  • Casellas M, Dagot C, Baudua M (2006) Set up and assessment of a control strategy in a SBR in order to enhance nitrogen and phosphorus removal. Process Biochem 41:1994–2001. doi:10.1016/j.procbio.2006.04.012

    Article  CAS  Google Scholar 

  • Dangcong P, Bernet N, Delgenes JP, Moletta R (2000) Effects of oxygen supply methods on the performance of a sequencing batch reactor for high ammonium nitrification. Water Environ Res 72:195–200. doi:10.2175/106143000X137284

    Article  Google Scholar 

  • Fabbricino M, Pirozzi F (2004) Designing and upgrading model of pre-denitrification systems. Clean Technol Environ Policy 6:213–220. doi:10.1007/s10098-003-0233-8

    Article  CAS  Google Scholar 

  • Farabegoli G, Carucci A, Majone M, Rolle E (2004) Biological Treatment of tannery wastewater in the presence of chromium. J Environ Manag 71:345–349. doi:10.1016/j.jenvman.2004.03.011

    Article  CAS  Google Scholar 

  • Ganesh R, Ramanujam RA (2009) Biological waste management of leather tannery effluents in India – Current options and future research needs. Int J Environ Eng 1:165–186. doi:10.1504/IJEE.2009.027313

    Article  Google Scholar 

  • Ganesh R, Balaji G, Ramanujam RA (2006) Biodegradation of Tannery Wastewater using Sequencing Batch Reactor – Respirometric Assessment. Bioresour Technol 97:1815–1821. doi:10.1016/j.biortech.2005.09.003

    Article  CAS  Google Scholar 

  • Henze M, Harremoes P, Arvin E, Jansen JC (2002) Wastewater Treatment: Biological and Chemical Processes. Springer, New York

    Book  Google Scholar 

  • Kargi F, Uygur A (2003) Biological nutrient removal in sequencing batch reactor with different number of steps. Clean Technol Environ Policy 6:61–65. doi:10.1007/s10098-003-0190-2

    Article  CAS  Google Scholar 

  • Leta S, Assefa F, Gumaelius L, Dalhammar G (2004) Biological nitrogen and organic matter removal from tannery wastewater in pilot plant operations in Ethiopia. Appl Microbiol Biotechnol 66:333–339. doi:10.1007/s00253-004-1715-2

    Article  CAS  Google Scholar 

  • Lofrano G, Meriç S, Zengin GE, Orhon D (2013) Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. Sci Total Environ 461–462:265–281. doi:10.1016/j.scitotenv.2013.05.004

    Article  Google Scholar 

  • Molinos-Senante M, Hernandez-Sancho F, Sala-Garrido R (2014) Benchmarking in wastewater treatment plants: a tool to save operational costs. Clean Technol Environ Policy 16:149–161. doi:10.1007/s10098-013-0612-8

    Article  Google Scholar 

  • Münch EV, Lant P, Keller J (1996) Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Res 30:277–284. doi:10.1016/0043-1354(95)00174-3

    Article  Google Scholar 

  • Munz G, Gualtiero M, Salvadori L, Claudia B, Claudio L (2008) Process efficiency and microbial monitoring in MBR (membrane bioreactor) and CASP (conventional activated sludge process) treatment of tannery wastewater. Bioresour Technol 99:8559–8564. doi:10.1016/j.biortech.2008.04.006

    Article  CAS  Google Scholar 

  • Murat S, Insel G, Artan N, Orhon D (2006) Performance evaluation of SBR treatment for nitrogen removal from tannery wastewater. Water Sci Technol 53:275–284. doi:10.2166/wst.2006.430

    Article  CAS  Google Scholar 

  • Orhan D, Geneceli EA, Sozen S (2000) Experimental evaluation of the nitrification kinetics for tannery wastewater. Water SA 26:43–50

    Google Scholar 

  • Puig S, Corominas L, Vives MT, Balaguer MD, Colprim J, Colomer J (2005) Development and implementation of a real-time control system for nitrogen removal using OUR and ORP as end points. Ind Eng Chem Res 44:3367–3373. doi:10.1021/ie0488851

    Article  CAS  Google Scholar 

  • Ray S, Mohanty A, Mohanty SS, Mishra S, Roy Chaudhury G (2013) Removal of nitrate and COD from wastewater using denitrification process: kinetic, optimization, and statistical studies. Clean Technol Environ Policy. doi:10.1007/s10098-013-0621-7

    Google Scholar 

  • Saeed T, Afrin R, Al Muyeed A, Sun G (2012) Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh. Chemosphere 88:1065–1073. doi:10.1016/j.chemosphere.2012.04.055

    Article  CAS  Google Scholar 

  • Saravanabhavan S, Aravindhan R, Thanikaivelan P, Raghava Rao J, Unni Nair B, Ramasami T (2004) A source reduction approach: integrated bio-based tanning methods and the role of enzymes in dehairing and fibre opening. Clean Technol Environ Policy 7:3–14. doi:10.1007/s10098-004-0251-1

    Article  Google Scholar 

  • Saravanabhavan S, Thanikaivelan P, Raghava Rao J, Unni Nair BA (2005) one-bath chrome tanning together with wet-finishing process for reduced water usage and discharge. Clean Technol Environ Policy 7:168–176. doi:10.1007/s10098-005-0277-z

    Article  CAS  Google Scholar 

  • Seggiani M, Puccini M, Vitolo S, Chiappe C, Pomelli CS, Castiello D (2014) Eco-friendly titanium tanning for the manufacture of bovine upper leathers: pilot-scale studies. Clean Technol Environ Policy. doi:10.1007/s10098-014-0722-y

    Google Scholar 

  • Sekaran G, Karthikeyan S, Evvie C, Boopathy R, Maharaja P (2013) Oxidation of refractory organics by heterogeneous Fenton to reduce organic load in tannery wastewater. Clean Technol Environ Policy 15:245–253. doi:10.1007/s10098-012-0502-5

    Article  CAS  Google Scholar 

  • Senthilvelan T, Kanagaraj J, Mandal AB (2012) Application of enzymes for dehairing of skins: cleaner leather processing. Clean Technol Environ Policy 14:889–897. doi:10.1007/s10098-012-0458-5

    Article  CAS  Google Scholar 

  • Sica M, Duta A, Teodosiu C, Draghici C (2014) Thermodynamic and kinetic study on ammonium removal from a synthetic water solution using ion exchange resin. Clean Technol Environ Policy 16:351–359. doi:10.1007/s10098-013-0625-3

    Article  CAS  Google Scholar 

  • Srinivasan SV, Prea Samita Mary G, Chitra K, Sureshkumar PS, Sri Balakameswari K, Suthanthararajan R, Ravindranath E (2012) Combined advanced oxidation and biological treatment of tannery effluent. Clean Technol Environ Policy 14:251–256. doi:10.1007/s10098-011-0393-x

    Article  CAS  Google Scholar 

  • Szpyrkowicz L, Kaul SN (2004) Biochemical removal of nitrogen from tannery wastewater: performance and stability of a full-scale plant. J Chem Technol Biotechnol 79:879–888. doi:10.1002/jctb.1064

    Article  CAS  Google Scholar 

  • Terada A, Zhou S, Hosomi M (2011) Presence and detection of anaerobic ammonium-oxidizing (anammox) bacteria and appraisal of anammox process for high-strength nitrogenous wastewater treatment: a review. Clean Technol Environ Policy 13:759–781. doi:10.1007/s10098-011-0355-3

    Article  CAS  Google Scholar 

  • Trivedi HK (2009) Simultaneous Nitrification and Denitrification (SymBio® Process), Advanced Biological Treatment Processes, Handbook of Environmental Engineering Series. Editors: Wang LK, Shammas NK, Hung YT, Humana Press, NY, USA, pp 185-208. doi:10.1007/978-1-60327-170-7

  • Wang LK, Li Y (2009) Sequencing Batch Reactors. Biological Treatment Processes, Handbook of Environmental Engineering Series, Editors: Wang LK, Pereira NC, Hung YT, Humana Press, NY, USA, pp 459-508. doi: 10.1007/978-1-60327-156-1

  • Zanetti L, Frison N, Nota E, Tomizioli M, Bolzonella D, Fatone F (2012) Progress in real-time control applied to biological nitrogen removal from wastewater. A short-review Desalin 286:1–7. doi:10.1016/j.desal.2011.11.056

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Senior Research Fellowship provided by the Council of Scientific and Industrial Research (CSIR), India and the funding provided by the French Embassy in India to undergo sandwich-thesis program to one of the authors (Rangaraj Ganesh) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rangaraj Ganesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, R., Sousbie, P., Torrijos, M. et al. Nitrification and denitrification characteristics in a sequencing batch reactor treating tannery wastewater. Clean Techn Environ Policy 17, 735–745 (2015). https://doi.org/10.1007/s10098-014-0829-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0829-1

Keywords

Navigation