Skip to main content

Advertisement

Log in

A study on treatment methods of spent pickling liquor generated by pickling process of steel

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Metals to be coated require pre-treatment to remove rust or scale, impurities and inorganic contaminants. In steel industries, pickling process generates a considerable quantity of Spent Pickle Liquor (SPL) containing the dissolved metal salts of iron, chromium, copper, nickel and zinc as well as residual free acid. The waste generated by metal pickling and electroplating industries is identified as hazardous solid waste as per Indian Standards and United State Environmental Protection Agency (US EPA). This paper discusses the advantages and disadvantages of treatment methods of spent pickling liquor generated by pickling line of steel. The discussion shows that treatment method depends upon the quantity, quality and composition of SPL. Experimental modelling helps in better understanding of treatment process and also craft process more technically and economically feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal A, Sahu KK (2009) Value addition to sulfate waste pickle liquor of steel industry using hydro metallurgical processes. Metall Mater Trans B 40:877–885

    Article  Google Scholar 

  • Agrawal A, Kumari S, Sahu KK (2011) Studies on solvent extraction of Fe(III) as a step conversion of a waste effluent to a value added product. J Environ Manag 92:3105–3111

    Article  CAS  Google Scholar 

  • Albert L (1999) Process and plant for extraction or recovery of acid from solution of these acids. US Patent 5980850

  • Albino V, Cioffi R, De VB, Santoro L (1996) Evaluation of solid waste stabilization processes by means of leaching tests. Environ Technol 17:309–315

    Article  CAS  Google Scholar 

  • Alguacil JF, Susana M (2001) Solvent extraction of Zn(II) by Cyanex 923 and its application to a solid-supported liquid membrane system. J Chem Technol Biotechnol 76:298–302

    Article  CAS  Google Scholar 

  • Andres A, Ortiz I, Viguri JR, Irabien A (1995) Long-term behaviour of toxic metals in stabilized steel foundry dusts. J Hazard Mater 40:31–42

    Article  Google Scholar 

  • Asavapisit S, Chotklang D (2004) Solidification of electroplating sludge using alkali-activated pulverized fuel ash as cementitious binder. Cem Concr Res 34(2):349–353

    Article  CAS  Google Scholar 

  • Bailey DE (1998) Optimizing anodizing baths with diffusion dialysis. Met Finish 96:14–17

    Article  CAS  Google Scholar 

  • Bailey DE, Howard T (1992) Acid recovery with diffusion dialysis. Met Finish 90:21–23

    CAS  Google Scholar 

  • Barhold F, Engelhardt W (2002) Method of regenerating a spent pickling solution. US Patent 6375915

  • Benedetto J, Morais CA (2001) In: Proceedings of VI southern hemisphere meeting on mineral technology. CETEM/MCT, Rio de Janeiro, pp 410–415

  • Bernata X (2008) Recovery of iron(III) from aqueous stream by ultra filtration. Desalination 221:413–418

    Article  CAS  Google Scholar 

  • Blumenschein CD, Olsen DR (2003) Regenerating spent pickling liquor. US patent 20030026746

  • Bruggena BV, Manttari M, Nystromb M (2008) Drawbacks of applying nanofiltration and how to avoid them: a review. Sep Purif Technol 63:251–263

    Article  Google Scholar 

  • Buchler P, Hanna R, Akhter H, Cartledge F, Tittlebaum M (1996) Solidification/stabilization of arsenic speciation. J Environ Sci Health A 31(4):747–754

    Google Scholar 

  • Caron L, Stambouli M, Durand G (2002) In: Proceedings of international solvent extraction conference ’02. Cape Town, South Africa, pp 774–780

  • Cartledge FK, Yang SL (1990) Immobilization mechanisms in solidification/stabilization of cadmium and lead salts using Portland cement fixing agents. Environ Sci Technol 24:867–873

    Article  CAS  Google Scholar 

  • Chen D, Fei W, Pratt HRC, Stevens GW (1999) In: Proceedings of international solvent extraction conference ’99. Barcelona, Spain. Society Chemical Industry, London, pp 469–473

  • Chen D, Mei CY, Yao LH, Jin HM, Qian GR, Xu ZP (2011) Flash fixation of heavy metals from two industrial wastes into ferrite by microwave hydrothermal co-treatment. J Hazard Mater 192:1675–1682

    Article  CAS  Google Scholar 

  • Chen D, Li Y, Zhanga J, Li W, Zhou J, Shao L, Qian G (2012) Efficient removal of dyes by a novel magnetic Fe3O4/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater. J Hazard Mater 243:152–160

    Article  CAS  Google Scholar 

  • Cheng KY, Bishop P (1992) Metals distribution in solidified/stabilized waste forms after leaching. Hazard Waste Hazard Mater 9:163–171

    Article  CAS  Google Scholar 

  • Chimenos JM, Fernandez MA, Segarra M, Fernandez AI, Esparducer A, Espiell F (1999) In: Proceedings of international solvent extraction conference ’99. Barcelona, Spain. Society Chemical Industry, London, pp 759–764

  • Ciminelli VST, Dias A, Braga HC (2006) Simultaneous production of impurity-free water and magnetite from steel pickling liquors by microwave-hydrothermal processing. Hydrometallurgy 84:37–42

    Article  CAS  Google Scholar 

  • Conner JR, Hoeffner SL (1998) The history of stabilization/solidification technology. Crit Rev Environ Sci Technol 28:325–396

    Article  CAS  Google Scholar 

  • Cubukcuoglu B, Ouki SK (2012) Solidification/stabilisation of electric arc furnace waste using low grade MgO. Chemosphere 86(8):789–796

    Article  CAS  Google Scholar 

  • Cushnie GC (1994) Pollution prevention and control technology for plating operations. National Centre for Manufacturing Sciences, Ann Arbor

    Google Scholar 

  • Da Silva CE, Benedetto JS, Tambourgi EB (1999) In: Proceedings of international solvent extraction conference ’99. Barcelona. Society Chemical Industry, London, pp 189–194

  • Daniali S (1990) Solidification/stabilization of heavy metals in latex modified Portland cements matrices. J Hazard Mater 24:225–230

    Article  CAS  Google Scholar 

  • Debroy M, Dara SS (1994) Immobilization of zinc and lead from wastes using simple and fiber-reinforced lime pozzolana admixtures. J Environ Sci Health 29:339–355

    Google Scholar 

  • Demopoulos GP, Li Z, Becze L, Moldoveanu G, Cheng TC, Harris B (2008) New technologies for HCl regeneration in chloride hydrometallurgy. World Metall 61:89–98

    CAS  Google Scholar 

  • Di Luca CD (2011) Environmentally friendly system and method for manufacturing iron powder. US patent 20110300062

  • Diaz G, Martin D, Frias C, Perez O (1999) In: Proceedings of international solvent extraction conference ’99. Barcelona, Spain. Society Chemical Industry, London, pp 1449–1454

  • Eisa EH, Wafaa SH, Essam AK, Maha RM (2011) Solidification/stabilization of Ni(II) by various cement pastes. Constr Build Mater 25:109–114

    Article  Google Scholar 

  • El-Nadi YA, El-Hefny NE (2010) Removal of iron from Cr-electroplating solution by extraction with di(2-ethylhexyl)phosphoric acid in kerosene. Chem Eng Process 49:159–164

    Article  CAS  Google Scholar 

  • Espinosa DCR, Tenorio JAS (2000) Laboratory study of galvanic sludge’s influence on the clinkerization process. Resour Conserv Recycl 31:71–82

    Article  Google Scholar 

  • Ferreira AS, Mansur MB (2011) Statistical analysis of the spray roasting operation for the production of high quality Fe2O3 from steel pickling liquors. Process Saf Environ Prot 89:172–178

    Article  CAS  Google Scholar 

  • Forsell BA, Niklasson RJV (1974) Process for neutralization and regeneration of aqueous solution of acids and dissolved metals. US Patent 3800024

  • Freshour AR, Thornton RF (2001) Acid recovery by diffusion dialysis. Environmental Laboratory, GE Corporate research and Development, Schenectady

    Google Scholar 

  • Fu YP (2006) Characterization of Ni–Cu–Zn ferrite prepared from steel pickling liquor and waste solutions of electroplating. J Am Ceram Soc 89:3547–3549

    Article  CAS  Google Scholar 

  • Gálvez JL, Dufour J, Negro C, López-Mateos F (2006) Fluoride speciation in stainless steel pickling liquor. Iron Steel Inst Jpn Int 46(2):281–286

    Article  Google Scholar 

  • Graaff JWM (1998) Acidic waste disposal by underground injection. J Geochem Explor 62:325–329

    Article  Google Scholar 

  • Gupta B, Tandon SN, Deep A (2002) In: Proceedings of international solvent extraction conference ’02. Cape Town pp 793–795

  • Heckley P, Ibana D (2000) In: Paper presented at new generation nickel laterites in the eastern goldfields, Australia. WMC Conference Centre, Kalgoorlie

  • Hills CD, Sollars CJ, Perry R (1993) Ordinary Portland cement based solidification of toxic wastes, the role of OPC reviewed. Cem Concr Res 23:196–212

    Article  CAS  Google Scholar 

  • Hoak DR, Lewis CJ (1945) Treatment of spent pickling liquor with limestone and lime. Ind Eng Chem 37:553–559

    Article  CAS  Google Scholar 

  • Hoak DR, Lewis CJ (1947) Lime treatment of waste pickling liquor. Ind Eng Chem 39:131–135

    Article  CAS  Google Scholar 

  • Hoak DR, Lewis CJ (1948) Pickle liquor neutralization: economic and technology factor. Ind Eng Chem 40:2062–2067

    Article  CAS  Google Scholar 

  • Hoak DR, Lewis CJ (1949) New technology for waste pickling liquor neutralization. Ind Eng Chem 41(11):65–70

    Article  CAS  Google Scholar 

  • Integrated Pollution Prevention and Control (IPPC) (2001) Reference document on best available techniques in the ferrous metals processing industry. http://ftp.jrc.es/pub/eippcb/doc/fmp_bref_1201.pdf

  • Ito M, Tachibana R, Fukushima K, Seino Y, Yamamoto A, Kawabata Y (1998) Characteristics and production: mechanism of sulfuric acid and nitric–hydrofluoric acid pickling sludge produced in manufacture of stainless steel. J Chem Eng Jpn 31:589–595

    Article  CAS  Google Scholar 

  • Ivey DG, Heimann RB, Neuwirth M, Shumborski S, Conrad D, Mikula RJ, Lam WW (1990) Electron microscopy of heavy metal waste in cement matrices. J Mater Sci 25:5055–5062

    Article  CAS  Google Scholar 

  • Jha MK, Kumar V, Singh RJ (2001) Review of hydrometallurgical recovery of zinc from industrial wastes. Resour Conserv Recycl 33:1–22

    Article  Google Scholar 

  • Jha MK, Kumar V, Singh JR (2002) Solvent extraction of zinc from chloride solutions. Solvent Extr Ion Exch 20:389–405

    Article  CAS  Google Scholar 

  • Jianli M, Youcai Z, Jinmei W, Li W (2010) Effect of magnesium oxychloride cement on stabilization/solidification of sewage sludge. Constr Build Mater 24:79–83

    Article  Google Scholar 

  • Katsioti M, Katsiotis N, Rouni G, Bakirtzis D, Loizidou M (2008) The effect of bentonite/cement mortar for the stabilization/solidification of sewage sludge containing heavy metals. Cement Concr Compos 30:1013–1019

    Article  CAS  Google Scholar 

  • Kindness A, Macias A, Glasser FP (1994) Immobilization of chromium in cement matrices. Waste Manag 14:3–11

    Article  CAS  Google Scholar 

  • Kittisupakorn P, Tangteerasunun P, Thitiyasook P (2005) Dynamic neural network modelling for hydrochloric acid recovery process. Korean J Chem Eng 22:813–821

    Article  CAS  Google Scholar 

  • Lanagan MD, Ibana DC, Frampton G (2000) Paper presented at New Generation Nickel Laterites in the Eastern Goldfields, Australia. WMC Conf. Centre Kalgoorlie

  • Lawson KW, Lloyd DR (1997) Membrane distillation. J Membr Sci 124:1–25

    Article  CAS  Google Scholar 

  • Lee CH, Wang HC, Lin CM, Yang GCC (1994) A long-term leachability study of solidified wastes by the multiple toxicity characteristic leaching procedure. J Hazard Mater 38:65–74

    Article  CAS  Google Scholar 

  • Liu NW, Chou MS (2012) Degree of hazardous reduction of secondary aluminium dross using ferrous chloride. J Hazard Toxic Radioact Waste 17(2):120–124

    Article  Google Scholar 

  • Liu CW, Lin CH, Fu YP (2007) Characterization of Mn–Zn ferrite prepared by a hydrothermal process from used dry batteries and waste steel pickling liquor. J Am Ceram Soc 90(10):3349–3352

    Article  CAS  Google Scholar 

  • Lum KH, Stevens GW, Kentish SE (2012) The modelling of water and hydrochloric acid extraction by tri-n-butyl phosphate. Chem Eng Sci 84:21–30

    Article  CAS  Google Scholar 

  • Lum KH, Stevens G, Perera JM, Kentish SE (2013) The modelling of ZnCl2 extraction and HCl co-extraction by TBP diluted in ShellSol 2046. Hydrometallurgy 133:64–74

    Article  CAS  Google Scholar 

  • Luo J, Wu C, Xu T, Wu Y (2011) Diffusion dialysis-concept, principle and applications. J Membr Sci 366:1–16

    Article  CAS  Google Scholar 

  • Macias A, Kindness A, Glasser FP (1997) Impact of carbon dioxide on the immobilization potential of cemented wastes: chromium. Cem Concr Res 27:215–225

    Article  CAS  Google Scholar 

  • Macphee DE, Glasser FP (1993) Immobilization science of cement systems. MRS Bull 3:66–71

    Google Scholar 

  • Mantius O (1938). Improvements in and relating to processes of recovering sulphuric acid from sulphuric acid. United Kingdom Patent GB483821

  • Ministry of Environment and Forest (2003) Notification, New Delhi, 20th May. The Gazette of India, Extraordinarily, Part-11, Section 3, Sub-section (ii), published by Authority No. 471, New Delhi, Friday, May 23

  • Minocha AK, Neeraj J, Verma CL (2003) Effect of inorganic materials on the solidification of heavy metal sludge. Cem Concr Res 33:1695–1701

    Article  CAS  Google Scholar 

  • Mishra RK, Rout PC, Sarangi K, Nathsarma KC (2010) A comparative study on extraction of Fe(III) from chloride leach liquor using TBP, Cyanex 921 and Cyanex 923. Hydrometallurgy 104:298–303

    Article  CAS  Google Scholar 

  • Mughal ST, Tahira S, Tayyaba A, Farzana B (2008) Treatment of electroplating effluent. J Chem Soc Pak 30:29–32

    CAS  Google Scholar 

  • Narasimhan BRV, Satendra Kumar, Narayanan TSN (2011) Synthesis of manganese zinc ferrite using ferrous pickle liquor and pyrolusite ore. Environ Chem Lett 9:243–250

    Article  CAS  Google Scholar 

  • Narvaez L, Cano E, Bastidas DM (2005) 3-Hydroxybenzoic acid as AISI 316L stainless steel corrosion inhibitor in a H2SO4–HF–H2O2 pickling solution. J Appl Electrochem 35:499–506

    Article  CAS  Google Scholar 

  • Oh SJ, Moon SH, Davis T (2000) Effect of metal ions on diffusion dialysis of inorganic acids. J Membr Sci 169:95–105

    Article  CAS  Google Scholar 

  • Owens JW, Stewart S (1996) Cement binders for organic wastes. Mag Concr Res 48:37–44

    Article  CAS  Google Scholar 

  • Ozdemir T, Oztin C, Kincal NS (2006) Treatment of waste pickling liquors: process synthesis and economic analysis. Chem Eng Commun 193:548–563

    Article  Google Scholar 

  • Peterson JC, Salof GA (1991) Process and apparatus for the low temperature recovery of ferrous chloride from spent hydrochloric acid. US Patent 5057290

  • Raymond LA, Stephen LJ (2009) Acid recycle process with iron removal. US patent 20090145856

  • Reddy MLP, Saji J (2002) In: Proceedings of chloride metallurgy ’02, 32nd annual hydrometallurgy meeting. CIM, Montreal, pp 513–525

  • Regel-Rosocka M (2010) A review on methods of regeneration of spent pickling solution from steel processing. J Hazard Mater 177:57–69

    Article  CAS  Google Scholar 

  • Regel-Rosocka M, Miesac I, Sastre AM, Szymanoski J (2002) In: Proceedings of international solvent extraction conference ’02. Cape Town, South Africa pp 768–773

  • Rogener F, Sartor M, Ban A, Bucholoh D (2012) Reichardt, Metal recovery from spent stainless steel pickling solution. Resour Conserv Recycl 60:72–77

    Article  Google Scholar 

  • Rosinda M, Ismael C, Carvalho R (2002) In: Proceedings of International Solvent extraction Conference ’02. Cape Town, South Africa pp 781–786

  • Roy A, Cartledge FK (1997) Fundamental aspects of cement solidification and stabilization. J Hazard Mater 52:151–354

    Article  Google Scholar 

  • Roy A, Eaton HC, Cartledge FK (1991) Solidification/stabilization of heavy metal sludge by a Portland cement/fly ash binding mixture. Hazard Waste Hazard Mater 8:33–41

    Article  CAS  Google Scholar 

  • Roy A, Eaton HC, Cartledge FK, Tittlebaum ME (1992) Solidification/stabilization of hazardous waste: evidence of physical encapsulation. Environ Sci Technol 26:1349–1353

    Article  CAS  Google Scholar 

  • Roy A, Eaton HC, Cartledge FK, Tittlebaum ME (1993) Solidification/stabilization of a synthetic electroplating sludge in cementitious binders containing NaOH. J Hazard Mater 35:53–71

    Article  CAS  Google Scholar 

  • Sahu SK, Verma K, Vijay BD, Kumar V, Pandey BD (2008) Recovery of Cr(VI) from electroplating effluent by solvent extraction with tri-n-butyl phosphate. Indian J Chem Technol 15:397–402

    CAS  Google Scholar 

  • Saji J, Rao TP, Iyer CSP, Reddy MLP (1998) Extraction of iron III/from acidic chloride solutions by Cyanex 923. Hydrometallurgy 49:289–296

    Article  CAS  Google Scholar 

  • Scholz W, Lucas M (2003) Techno-economic evaluation of membrane filtration for the recovery and re-use of tanning chemicals. Water Res 37:1859–1867

    Article  CAS  Google Scholar 

  • Shaikh L, Pandit A, Ranade V (2013) Crystallisation of ferrous sulphate heptahydrate: experiments and modelling. Can J Chem Eng 91:47–54

    Article  CAS  Google Scholar 

  • Singhal A, Prakash S, Tewari VK (2007) Trials on sludge of lime treated spent liquor of pickling unit for use in the cement concrete and its leaching characteristics. Build Environ 42:196–202

    Article  Google Scholar 

  • Singhal A, Prakash S, Tewari VK (2008a) Utilization of treated spent liquor sludge with fly ash in cement and concrete. Build Environ 43:991–998

    Article  Google Scholar 

  • Singhal A, Prakash S, Tewari VK (2008b) Characterization of stainless steel pickling bath sludge and its solidification/stabilization. Build Environ 43:1010–1015

    Article  Google Scholar 

  • Stachera DM, Childs RF, Mika AM, Dickson JM (1998) Acid recovery using diffusion dialysis with poly(4-vinylpyridine)-filled microporous membranes. J Membr Sci 148:119–127

    Article  CAS  Google Scholar 

  • Stevenson EP (1924) Method of treating spent pickling liquor, US Patent 1,515,799

  • Stocks CP, Wood J, Guy S (2005) Minimisation and recycling of spent acid wastes from galvanizing plants. Resour Conserv Recycl 44:153–166

    Article  Google Scholar 

  • Sze YKP, Lam CSW, Long WK, Ho JMY (1999) In: Proceedings of international solvent extraction conference ’99. Barcelona, Spain. Society Chemical Industry, London pp 231–235

  • Tamas FD, Csetenyi L, Tritthart E (1992) Effect of adsorbent on the leachability of cement bonded electroplating wastes. Cem Concr Res 22:399–404

    Article  CAS  Google Scholar 

  • Tanaka B, Kobayashi M, Seki T (2002) In: Proceedings of International Solvent extraction Conference ’02. Cape Town pp 787–792

  • Tang B, Yuan L, Shi T, Yu L, Zhu Y (2009) Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation. J Hazard Mater 163:1173–1178

    Article  CAS  Google Scholar 

  • Tang B, Su W, Wang J, Fu F, Yu G, Zhang J (2012) Minimizing the creation of spent pickling liquors in a pickling process with high-concentration hydrochloric acid solutions: mechanism and evaluation method. J Environ Manag 98:147–154

    Article  CAS  Google Scholar 

  • Temyanko VL (2003) Ferrous chloride conversion. US patent 2003021103

  • The Environment Protection Rules (1986) General standards for discharge of environmental pollutants. Part-A: effluents (Schedule VI), pp 545–548

  • Tomaszewska M, Gryta M, Morawski AW (1998) The influence of salt in solutions on hydrochloric acid recovery by membrane distillation. Sep Purif Technol 14:183–188

    Article  CAS  Google Scholar 

  • Vijay R, Sihorwala TA (2003) Identification and leaching characteristics of sludge generated from metal pickling and electroplating industries by toxicity characteristic leaching procedure (TCLP). Environ Monit Assess 84:193–202

    Article  CAS  Google Scholar 

  • Voglar GE, Lestan D (2011) Efficiency modelling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives. J Hazard Mater 192:753–762

    Article  CAS  Google Scholar 

  • Wagialla KM (2012) Synthesis of mass integration networks: integrated approach to optimization of stream matching for a metal pickling process. Comput Chem Eng 44:11–19

    Article  CAS  Google Scholar 

  • Wang SY, Vipulanandan C (1996) Leachability of lead from solidified cement–fly ash binders. Cem Concr Res 26:895–905

    Article  CAS  Google Scholar 

  • Wang SY, Vipulanandan C (2000) Solidification/Stabilization of Cr(VI) with cement leachability and XRD anaylsis. Cem Concr Res 30:385–389

    Google Scholar 

  • Wang K, Li J, McDonald RG, Browner RE (2011) The effect of iron precipitation upon nickel losses from synthetic atmospheric nickel laterite leach solutions: statistical analysis and modelling. Hydrometallurgy 109:140–152

    Article  CAS  Google Scholar 

  • Weitzman L, Conner JR (1989) Descriptions of solidification/stabilization technologies, immobilization technology seminar—speaker slide copies and supporting information. US EPA, CERI, Cincinnati, pp 89–222

    Google Scholar 

  • Weng CH, Huang CP (1994) Treatment of metal industrial wastewater by fly ash and cement fixation. J Environ Eng 120:1470–1488

    Article  CAS  Google Scholar 

  • Whetzel JC, Zimmerman RE (1935) Methods of recovering salts and other compounds. US Patent 2,005,120

  • Winter DJ (2009) Processing of metal chloride solutions and method and apparatus for producing direct reduced iron. US Patent 20090095132

  • Yang GCC (1993) Durability study of a solidified mercury-containing sludge. J Hazard Mater 34:217–223

    Article  CAS  Google Scholar 

  • Yang GCC, Chang CF (1994) Long-term stability of superplasticized monoliths of a solidified electroplating sludge. J Hazard Mater 37(2):277–283

    Article  CAS  Google Scholar 

  • Yang GCC, Kao KL (1994) Feasibility of using a mixture of an electroplating sludge and calcium carbonate sludge as a binder for sludge solidification. J Hazard Mater 36:81–88

    Article  CAS  Google Scholar 

  • Zhou H, Smith DW (2002) Advanced technologies in water and wastewater treatment. J Environ Eng Sci 1:247–264

    Article  CAS  Google Scholar 

  • Zorigtkhuu D, Kim YS, Kim H, Suh YK (2006) Manufacture of an oil-based Fe–Co magnetic fluid by utilization of the pickling liquid of steel. Met Mater Int 12:517–523

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Devi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devi, A., Singhal, A., Gupta, R. et al. A study on treatment methods of spent pickling liquor generated by pickling process of steel. Clean Techn Environ Policy 16, 1515–1527 (2014). https://doi.org/10.1007/s10098-014-0726-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0726-7

Keywords

Navigation