Skip to main content
Log in

Calorimetric elucidation of ionic interactions in room temperature ionic liquid solutions

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Knowledge of thermal properties of room temperature ionic liquid (RTIL) solutions is essential in chemical process designing in addition to their application in understanding ionic interactions at molecular level. RTILs are considered to be substitutes for volatile organic compounds. While some experimental thermal data on these systems are available in a random manner, the modeling efforts to correlate enthalpy-concentration profiles of RTIL solutions are very scanty. In this review, an effort has been made to compare and discuss the experimental data of these RTIL solutions available in the literature. The readers are also made aware of the disappointing situation regarding the availability of any type of correlative models for the enthalpy-concentration data of the RTIL systems. An accurate knowledge of activity coefficients at infinite dilutions, Υ i acquired from thermal data will serve as inputs for the newer less polluting process designing and thus open opportunity for a cleaner environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Banqui W, Reddy RG, Rogers RD (2001) Novel ionic liquid thermal storage for solar thermal electric power systems. In: International Solar Energy Conference, pp 445–451

  • Bhargava BL, Klein ML (2009) Initial stages of aggregation in aqueous solutions of ionic liquids: molecular dynamics studies. J Phys Chem B 113:9499–9505

    Article  CAS  Google Scholar 

  • Borra EF, Seddiki O, Angel R, Eisenstein D, Hickson P, Seddon KR, Worden SP (2007) Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 447:979–981

    Article  CAS  Google Scholar 

  • Coleman D, Špulak M, Garcia MT, Gathergood N (2012) Antimicrobial toxicity studies of ionic liquids leading to a “Hit” MRSA selective antibacterial imidazolium salt. Green Chem 14:1350–1356

    Article  CAS  Google Scholar 

  • Earle JM, Seddon KR (2000) Ionic liquids: green solvents for future. Pure Appl Chem 72:1391–1398

    Article  CAS  Google Scholar 

  • Egashira M, Okada S, Yamaki JL, Yoshimoto N, Morita M (2005) Effect of small cation addition on the conductivity of quaternary ammonium ionic liquids. Electrochim Acta 50:3702–3708

    Article  Google Scholar 

  • Fang D-W, Sun Y-C, Wang Z-W (2008) Solution enthalpies of ionic liquid 1-hexyl-3-methylimidazolium chloride. J Chem Eng Data 53:259–261

    Article  CAS  Google Scholar 

  • Fu D, Mazza G (2011) Aqueous ionic liquid pretreatment of straw. Bioresour Technol 102:7008–7011

    Article  CAS  Google Scholar 

  • Gale RJ, Osteryoung RA (1979) Potentiometric investigation of dialuminum heptachloride formation in aluminium chloride-1-butylpyridinium chloride mixtures. Inorg Chem 18:1603–1605

    Article  CAS  Google Scholar 

  • Guan W, Li L, Wang H, Tong J, Yang J-Z (2008) Studies on thermochemical properties of ionic liquids based on transition metal. J Therm Anal Calorim 94:507–510

    Article  CAS  Google Scholar 

  • Guan W, Xue W-F, Chen S-P, Fang D-W, Huang Y, Gao S-L (2009) Enthalpy of dilution of aqueous [C4mim][Gly] at 298.15 K. J Chem Eng Data 54:2871

    Article  CAS  Google Scholar 

  • Heintz A, Verevkin SP, Lehmann JK, Vasiltsova TV, Ondo D (2007) Activity coefficients at infinite dilution and enthalpies of solution of methanol, 1-butanol, and 1-hexanol in 1-hexyl-3-methyl-imidazolium bis(trifluoromethyl-sulfonyl) imide. J Chem Thermodyn 39:268–274

    Article  CAS  Google Scholar 

  • Hurley FH (1948) US Patent 2,446,331; Chem Abstr (1949) 43, P7645b

  • Hurley FH, Weir TP Jr (1951) The electrodeposition of aluminum from nonaqueous solutions at room temperature. J Electrochem Soc 98:207–212

    Article  CAS  Google Scholar 

  • Katayanagi H, Nishikawa K, Shimozaki H, Westh P, Koga Y (2004) Mixing schemes in ionic liquid-H2O systems: a thermodynamic study. J Phys Chem B 108:19451–19547

    Article  CAS  Google Scholar 

  • Kustov AV, Korolev VP (2005) Temperature dependence of the ion pair interaction between hydrophobic and hydrophilic solutes: a calorimetric study. Thermochim Acta 437:190–195

    Article  Google Scholar 

  • Lapkin A, Plucinski PK, Cutler M (2006) Comparative assessment of technologies for extraction of artemisinin. J Nat Prod 11:1653–1664

    Article  Google Scholar 

  • Lee JM, Prausnitz JM (2010) Polarity and hydrogen-bond-donor strength for some ionic liquids: effect of alkyl chain length on the pyrrolidinium cation. Chem Phys Lett 492:55–59

    Article  CAS  Google Scholar 

  • Lee SY, Yong HH, Lee YJ, Kim SK, Ahn S (2005) Two-cation competition in ionic-liquid-modified electrolytes for lithium ion batteries. J Phys Chem B 109:13663–13667

    Article  CAS  Google Scholar 

  • Li S, Yan W, Dong H (2007) Determination of partial molar excess enthalpies at infinite dilution for the systems four alcohols + [bmim]PF6 at different temperatures by isothermal titration calorimeter. Fluid Phase Equilib 261:444–448

    Article  CAS  Google Scholar 

  • Luo H, Baker GA, Dai S (2008) Isogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids. J Phys Chem B 112:10077–10081

    Article  CAS  Google Scholar 

  • Marcus Y (1999) The properties of solvents, vol 4. Wiley, Chichester

    Google Scholar 

  • Marczak W, Verevkin SP, Heintz A (2003) Enthalpies of solution of organic solutes in the ionic liquid 1-methyl-3-ethyl-imidazolium bis-(trifluoromethyl-sulfonyl)amide. J Sol Chem 32:519–526

    Article  CAS  Google Scholar 

  • McEven AB, Ngo LN, Lecompte K, Goldman JL (1999) Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem Soc 146:1687–1695

    Article  Google Scholar 

  • Miki K, Westh P, Nishikawa K, Koga Y (2005) Effect of an “ionic liquid” cation, 1-butyl-3-methylimidazolium, on the molecular organization of H2O. J Phys Chem B 109:9014–9019

    Article  CAS  Google Scholar 

  • Pfeffer T, Lowen B, Schulz S (1995) Calorimetric measurement of the partial molar excess enthalpy at infinite dilution h E,∞i and its meaning for the calculation of the concentration and temperature dependence of the molar excess enthalpy hE. Fluid Phase Equilib 106:139–167

    Article  CAS  Google Scholar 

  • Pitzer KS (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. J Phys Chem 77:268–274

    Article  CAS  Google Scholar 

  • Rai G, Kumar A (2010) A reversal from endothermic to exothermic behavior of imidazolium-based ionic liquids in molecular solvents. Chem Phys Lett 496:143–147

    Article  CAS  Google Scholar 

  • Rai G, Kumar A (2011) An enthalpic approach to delineate the interactions of cations of imidazolium-based ionic liquids with molecular solvents. Phys Chem Chem Phys 13:14715–14722

    Article  CAS  Google Scholar 

  • Ranke J, Stolte S, Stormann R, Arning J, Jastorff B (2007) Design of sustainable chemical products—the example of ionic liquids. Chem Rev 107:2183–2206

    Article  CAS  Google Scholar 

  • Rebelo LPN, Najdanovic-Visak V, Visak ZP, Nunes da Ponte M, Szydlowski J, Cerdeiriña CA, Troncoso J, Romaní L, Esperança JMSS, Guedes HJR, de Sousa HC (2004) A detailed thermodynamic analysis of [C4mim][BF4] + water as a case study to model ionic liquid aqueous solutions. Green Chem 6:369–381

    Article  CAS  Google Scholar 

  • Reis M, Leitao RE, Martins F (2010) Enthalpies of solution of 1-butyl-3-methylimidazolium tetrafluoroborate in 15 solvents at 298.15 K. J Chem Eng Data 55:616–620

    Article  CAS  Google Scholar 

  • Rodionova T, Komarov V, Villevald G, Aladko L, Karpova T, Manakov A (2010) Calorimetric and structural studies of tetrabutylammonium chloride ionic clathrate hydrates. J Phys Chem B 114:11838–11846

    Article  CAS  Google Scholar 

  • Taft RW, Abboud JLM, Kamlet MJ, Abraham MH (1985) Linear solvation energy relations. J Sol Chem 14:153–186

    Article  CAS  Google Scholar 

  • Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imper Sci St Petersburg 8:405–422

    Google Scholar 

  • Walker AJ, Bruce NC (2004) Cofactor-dependent enzyme catalysis in functionalized ionic solvents. Chem Commun 22:2570

    Article  Google Scholar 

  • Wassercheid P, Welton T (2003) Ionic liquids in synthesis. Wiley, Weinheim

    Google Scholar 

  • Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  CAS  Google Scholar 

  • Wilkes JS (2002) A short history of ionic liquids from molten salts to neoteric solvents. Green Chem 4:73–80

    Article  CAS  Google Scholar 

  • Wood RH, Belkin F (1973) Enthalpy and entropy of dilution of tetraethanol ammoinium bromide. J Chem Eng Data 18:184–186

    Article  CAS  Google Scholar 

  • Zhang ZH, Sun LX, Tan ZC, Xu F, Lv XC, Zheng JL, Sawada Y (2007) Thermodynamic investigation of room temperature ionic liquid: heat capacity and thermodynamic functions of BPBF4. J Therm Anal Calorim 89:289–294

    Article  CAS  Google Scholar 

  • Zheng H, Zhang H, Fu Y, Abe T, Ogumi Z (2005) Temperature effects on the electrochemical behavior of spinel LiMn2O4 in quaternary ammonium-based ionic liquid electrolyte. J Phys Chem B 109:13676–13684

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GR thanks CSIR, New Delhi for the award of a Research Fellowship. AK gratefully acknowledges DST, New Delhi for providing him J C Bose National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, G., Kumar, A. Calorimetric elucidation of ionic interactions in room temperature ionic liquid solutions. Clean Techn Environ Policy 16, 1529–1536 (2014). https://doi.org/10.1007/s10098-013-0644-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-013-0644-0

Keywords

Navigation