Skip to main content

Advertisement

Log in

Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Realizing a sustainable development of our planet requires a reduction of waste production, harmful emissions, and higher energy efficiency as well as utilization of renewable energy sources. One pathway to this end is the design of sustainable biorefinery concepts. Utilizing waste streams as raw material is gaining great importance in this respect. This reduces environmental burden and may at the same time contribute to economic performance of biorefineries. This paper investigates the utilization of slaughtering waste to produce biodegradable polyesters, polyhydroxyalkanoates (PHA), via bioconversion. PHA are the target product while production of high quality biodiesel along with meat and bone meal (MBM) as by-products improves the economic performance of the process. The paper focuses on ecological comparison of different production scenarios and the effect of geographical location of production plants taking different energy production technologies and resources into account; ecological footprint evaluation using Sustainable Process Index methodology was applied. Keeping in mind that the carbon source for PHA production is produced from waste by energy intensive rendering process, the effect of available energy mixes in different countries becomes significant. Ecological footprint results from the current study show a bandwidth from 372,950 to 956,060 m2/t PHA production, depending on the energy mix used in the process which is compared to 2,508,409 m2/t for low density polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AT:

Austria

A R :

Area for resources

A E :

Area for energy consumption

A I :

Area for installations

A S :

Area for services

A D :

Area for dissipation

A tot :

Total area

a tot = A tot/N P :

Total area per service unit

CN:

Canada

DE:

Germany

DK:

Denmark

IT:

Italy

FR:

France

NO:

Norway

PL:

Poland

USA:

United States of America

References

  • ANIMPOL is used as an “Acronym” for a project financed by European Commission with in 7th framework programme (FP7) aimed “Biotechnological conversion of carbon containing wastes for eco-efficient production of high added value products” (Contract No: 245084)

  • Braunegg G, Bona R, Koller M (2004) Sustainable polymer production. Polym Plast Technol Eng 43(6):1779–1974. doi:10.1081/PPT-200040130

    Google Scholar 

  • Chen GQ (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Chen GQ, Steinbüchel A (eds) Plastics from bacteria. Natural functions and applications. Springer, Berlin, pp 17–38

    Chapter  Google Scholar 

  • Chiellini E, Cinelli P, Chiellini F, Imam SH (2004) Environmentally degradable bio-based polymeric blends and composites. Macromol Biosci 4(3):218–231. doi:10.1002/mabi.200300126

    Article  CAS  Google Scholar 

  • Čuček L, Klemeš JJ, Kravanja Z (2012) A review of footprint analysis tools for monitoring impacts on sustainability. J Clean Prod 34:9–20. doi:10.1016/j.jclepro.2012.02.036

    Article  Google Scholar 

  • Eurostat (2009) Panorama of energy. Energy statistics to support EU policies and solutions. ISBN 978-92-79-11151-8, ISSN 1831-3256, doi:10.2785/26846, Cat. No. KS-GH-09-001-EN-C

  • Gwehenberger G, Narodoslawsky M (2007) The ecological impact of the sugar sector—aspects of the change of a key industrial sector in Europe. Comput Aided Chem Eng 24:1029–1034. doi:10.1016/S1570-7946(07)80196-9

    Article  Google Scholar 

  • Hany R, Bohlen C, Geiger T, Schmid M, Zinn M (2004) Toward non-toxic antifouling: synthesis of hydroxy-, cinnamic acid-, sulfate-, and zosteric acid-labeled poly[3-hydroxyalkanoates]. Biomacromolecules 5:1452–1456. doi:10.1021/bm049962e

    Article  CAS  Google Scholar 

  • International Energy Agency (IEA), World Energy Outlook (2009) Organization for Economic Cooperation and Development. www.iea.org/stats/index.asp. Accessed 14 Jan 2013

  • Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13(3):321–326. doi:10.1016/j.mib.2010.02.006

    Article  CAS  Google Scholar 

  • Kettl KH, Niemetz N, Sandor N, Eder M, Narodoslawsky M (2011) Ecological impact of renewable resource-based energy technologies. J Fundam Renew Energy Appl. doi:10.4303/jfrea/R101101

    Google Scholar 

  • Khardenavis AA, Kumar MS, Mudliar SN, Chakrabarti T (2007) Biotechnological conversion of agro-industrial wastewaters into biodegradable plastic, poly-β-hydroxybutyrate. Bioresour Technol 98:3579–3584. doi:10.1016/j.biortech.2006.11.024

    Article  CAS  Google Scholar 

  • Dr. Martin Koller, Graz University of Technology, “Institute of Biotechnology and Biochemical Engineering”, martin.koller@tugraz.at

  • Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Varila P, Pereira L (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6:561–565. doi:10.1021/bm049478b

    Article  CAS  Google Scholar 

  • Koller M, Atlić A, Dias M, Reiterer A, Braunegg G (2010a) Microbial PHA production from waste raw materials. In: Chen G-Q, Steinbüchel A (eds) Plastics from bacteria. Natural functions and applications, vol 14. Springer, Berlin, pp 85–119. doi:10.1007/978-3-642-03287-5_5

  • Koller M, Salerno A, Miranda de Sousa DM, Reiterer A, Braunegg G (2010b) Modern biotechnological polymer synthesis: a review. Food Technol Biotechnol 48(3):255–269

    CAS  Google Scholar 

  • Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, Pieber S, Schnitzer H, Mittelbach M, Braunegg G (2012a) Characteristics and potential of micro algal cultivation strategies. J Clean Prod 37:377–388. doi:10.1016/j.jclepro.2012.07.044

    Article  CAS  Google Scholar 

  • Koller M, Salerno A, Muhr A, Reiterer A, Chiellini E, Casella, S, Horvat P, Braunegg G (2012b) Whey lactose as a raw material for microbial production of biodegradable polyesters. Polyester 51–92. doi:10.5772/48737

  • Koller M, Salerno A, Muhr A, Reiterer A, Braunegg G (2013) Polyhydroxyalkanoates: biodegradable polymeric materials from renewable resources. Mater Technol 47. doi:10.1016/j.jbiotec.2013.02.003

  • Krotscheck C, Narodoslawsky M (1996) The sustainable process index; a new dimension in ecological evaluation. Ecol Eng 6(4):241–258. doi:10.1016/0925-8574(95)00060-7

    Article  Google Scholar 

  • Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. eXPRESS Polym Lett 5(7):620–634. doi:10.3144/expresspolymlett.2011.6d

    Article  Google Scholar 

  • Narodoslawsky M, Krotscheck C (1995) The sustainable process index (SPI): evaluating processes according to environmental compatibility. J Hazard Mater 41(2–3):383–397. doi:10.1016/0304-3894(94)00114-V

    Article  CAS  Google Scholar 

  • Narodoslawsky M, Krotscheck C (2004) What can we learn from ecological valuation of processes with the sustainable process index (SPI)—the case study of energy production systems. J Clean Prod 12:111–115. doi:10.1016/S0959-6526(02)00184-1

    Article  Google Scholar 

  • OECD (2002) Glossary of statistical terms. http://stats.oecd.org/glossary/detail.asp?ID=4097. Accessed 14 Jan 2013

  • Patel MK, Bastioli C, Marini L, Wurdinger GE (2005) Life-cycle assessment of bio-based polymers and natural fiber composites environmental assessment of bio-based polymers and natural fibres. Biopolymers. doi:10.1002/3527600035.bpola014 (Willey, Online Library)

    Google Scholar 

  • Pickering MV, Newton P (1990) Amino acid hydrolysis: old problems, new solutions. Bioseparations 8(10):778–781

    CAS  Google Scholar 

  • Rees W, Wackernagel M (1996) Urban ecological footprints: why cities cannot be sustainable—and why they are a key to sustainability. Environ Impact Assess Rev 16:223–248

    Article  Google Scholar 

  • Rupp B, Ebner C, Rossegger E, Slugovc C, Stelzer F, Wiesbrock F (2010) UV-induced crosslinking of the biopolyester poly(3-hydroxybutyrate)-co-(3-hydroxyvalerate). Green Chem 12:1796–1802. doi:10.1039/C0GC00066C

    Article  CAS  Google Scholar 

  • Sandholzer D, Narodoslawsky M (2007) SPIonExcel—fast and easy calculation of the Sustainable Process Index via computer. Resour Conserv Recycl 50:130–142. doi:10.1016/j.resconrec.2006.06.012

    Article  Google Scholar 

  • Shrivastav A, Mishra SK, Shethia B, Pancha I, Jain D, Mishra S (2010) Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates (PHAs) production utilizing Jatropha biodiesel byproduct. Int J Biol Macromol 47(2):283–287. doi:10.1016/j.ijbiomac.2010.04.007

    Article  CAS  Google Scholar 

  • Solaiman DKY, Ashby RD, Foglia TA, Marmer WN (2006) Conversion of agricultural feedstock and co-products into poly(hydroxyalkanoates). Appl Microbiol Biotechnol 71:783–789. doi:10.1007/s00253-006-0451-1

    Article  CAS  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 3:219–228. doi:10.1111/j.1574-6968.1995.tb07528.x

    Article  Google Scholar 

  • Stoeglehner G, Niemetz N, Kettl KH (2011) Spatial dimensions of sustainable energy systems: new visions for integrated spatial and energy planning. Energy Sustain Soc 1:2. doi:10.1186/2192-0567-1-2

    Article  Google Scholar 

  • Sudesh K, Iwata T (2008) Sustainability of biobased and biodegradable plastics. Clean Soil Air Water 36(5–6):433–442. doi:10.1002/clen.200700183

    Article  CAS  Google Scholar 

  • Titz M, Kettl K-H, Shazhad K, Koller M, Schnitzer H, Narodoslawsky M (2012) Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol Environ Policy 14(3):495–503. doi:10.1007/s10098-012-0464-7

    Article  CAS  Google Scholar 

  • Woodgate S, Van der Veen J (2004) The role of fat processing and rendering in the European Union animal production industry. Biotechnol Agron Soc Environ 8:283–294

    Google Scholar 

  • Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21. doi:10.1016/S0169-409X(01)00218-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the European Commission by granting the project “Biotechnological conversion of carbon containing wastes for eco-efficient production of high added value products”, Acronym ANIMPOL (Contract No: 245084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurram Shahzad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahzad, K., Kettl, KH., Titz, M. et al. Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources. Clean Techn Environ Policy 15, 525–536 (2013). https://doi.org/10.1007/s10098-013-0608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-013-0608-4

Keywords

Navigation