Skip to main content
Log in

Non-commercial phenotypic assays for the detection of Mycobacterium tuberculosis drug resistance: a systematic review

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Several rapid non-commercial culture-based methods and assays for drug susceptibility testing (DST) of Mycobacterium tuberculosis have emerged over the last decades. The aim of the current review was to summarise evidence on the performance of microscopic observation of drug susceptibility (MODS), thin-layer agar (TLA) and colorimetric redox-indicator (CRI) assays for detection of resistance to first- and second-line anti-tuberculosis (TB) drugs. Forty-three publications satisfying selection criteria were selected for data extraction. MODS and CRI assays demonstrated pooled sensitivity and specificity of > 93% for the detection of resistance to rifampicin and isoniazid and confirmed their utility for an accurate detection of multidrug-resistant TB (MDR-TB) in various settings. Sensitivity and specificity values for indirect DST for ethambutol (EMB) using CRI assays were 94.0% and 82.0%, respectively, suggesting that CRIs could be used to rule out resistance to EMB. Performance for other drugs varied more substantially across the reports. There was no sufficient evidence on the performance of the TLA assay for making any conclusion on its utility for DST. Our data suggests that non-commercial assays could be used for a rapid and accurate DST in settings where the use of commercial World Health Organization-endorsed assays could be limited due to a variety of reasons including limited resources, laboratory facilities or trained personnel. While inexpensive and easy-to-perform MODS and TLA assays can be used in low-income settings, using CRI assays for determination of minimal inhibitory concentrations may be implemented in middle- and high-income countries with high MDR-TB burden to guide clinical management of TB patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. WHO (2018) Global Tuberculosis Report 2018. World Health Organization, Geneva

    Google Scholar 

  2. WHO (2011) Noncommercial culture and drug-susceptibility testing methods for screening patients at risk for multidrug-resistant tuberculosis: policy statement. World Health Organization, Geneva

    Google Scholar 

  3. Kwak M, Lee WK, Lim YJ, Lee SH, Ryoo S (2017) Systematic review and meta-analysis of the nitrate reductase assay for drug susceptibility testing of Mycobacterium tuberculosis and the detection limits in liquid medium. J Microbiol Methods

  4. Schena E, Nedialkova L, Borroni E, Battaglia S, Cabibbe AM, Niemann S, Utpatel C, Merker M, Trovato A, Hofmann-Thiel S, Hoffmann H, Cirillo DM (2016) Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTEC MGIT 960 system. J Antimicrob Chemother 71(6):1532–1539

    CAS  PubMed  Google Scholar 

  5. Li H, Zhou LP, Luo J, Yu JP, Yang H, Wei HP (2016) Rapid colorimetric pyrazinamide susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc Lung Dis 20(4):462–467

    CAS  PubMed  Google Scholar 

  6. WHO (2008) The programmatic management of drug-resistant tuberculosis – emergency update 2008. World Health Organization

  7. Gumbo T (2010) New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob Agents Chemother 54(4):1484–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kahlmeter G, Brown DF, Goldstein FW, MacGowan AP, Mouton JW, Odenholt I, Rodloff A, Soussy CJ, Steinbakk M, Soriano F, Stetsiouk O (2006) European Committee on Antimicrobial Susceptibility Testing (EUCAST) Technical Notes on antimicrobial susceptibility testing. Clin Microbiol Infect 12(6):501–503

    CAS  PubMed  Google Scholar 

  9. Angeby K, Jureen P, Kahlmeter G, Hoffner SE, Schon T (2012) Challenging a dogma: antimicrobial susceptibility testing breakpoints for Mycobacterium tuberculosis. Bull World Health Organ 90(9):693–698

    PubMed  PubMed Central  Google Scholar 

  10. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM, Group Q (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536

    Google Scholar 

  11. Alam HB, Miah MR, Kamal SM, Roy CK, Saleh AA (2013) Rapid drug susceptibility testing for Mycobacterium tuberculosis in thin layer agar media. Bangladesh J Med Microbiol 7:2–6

    Google Scholar 

  12. Wan Nor AWAW, Mohammad L, Siti SMN, Noor INJ (2016) Direct tetrazolium microplate assay (TEMA) for rapid drug susceptibility test screening of Mycobacterium tuberculosis. Trop Biomed 33(4):814–823

    Google Scholar 

  13. Ardizzoni E, Mulders W, Kotrikadze T, Aspindzelashvili R, Goginashvili L, Pangtey H, Varaine F, Bastard M, Rigouts L, De Jong BC (2015) The thin-layer agar method for direct phenotypic detection of multi-and extensively drug-resistant tuberculosis. Int J Tuberc Lung Dis 19(12):1547–1552

    CAS  PubMed  Google Scholar 

  14. Bwanga F, Joloba ML, Haile M, Hoffner S (2010) Evaluation of seven tests for the rapid detection of multidrug-resistant tuberculosis in Uganda. Int J Tuberc Lung Dis 14(7):890–895

    CAS  PubMed  Google Scholar 

  15. Catanzaro A, Rodwell TC, Catanzaro DG, Garfein RS, Jackson RL, Seifert M, Georghiou SB, Trollip A, Groessl E, Hillery N, Crudu V, Victor TC, Rodrigues C, Lin GS, Valafar F, Desmond E, Eisenach K (2015) Performance Comparison of Three Rapid Tests for the Diagnosis of Drug-Resistant Tuberculosis. PLoS One 10(8):e0136861

    PubMed  PubMed Central  Google Scholar 

  16. Chaiyasirinroje B, Aung MN, Moolphate S, Kasetjaroen Y, Rienthong S, Rienthong D, Nampaisan O, Nedsuwan S, Sangchun W, Suriyon N, Mitarai S, Yamada N (2012) Prospective evaluation of simply modified MODS assay: an effective tool for TB diagnosis and detection of MDR-TB. Infect Drug Resist 5:79–86

    PubMed  PubMed Central  Google Scholar 

  17. Coban AY, Uzun M, Akgunes A, Durupinar B (2012) Comparative evaluation of the microplate nitrate reductase assay and the rezasurin microtitre assay for the rapid detection of multidrug resistant Mycobacterium tuberculosis clinical isolates. Mem Inst Oswaldo Cruz 107(5):578–581

    CAS  PubMed  Google Scholar 

  18. Coban AY (2014) A new rapid colourimetric method for testing Mycobacterium tuberculosis susceptibility to isoniazid and rifampicin: A crystal violet decolourisation assay. Mem Inst Oswaldo Cruz 109(2):246–249

    PubMed  PubMed Central  Google Scholar 

  19. Coban AY, Akbal AU, Uzun M, Durupinar B (2015) Evaluation of four colourimetric susceptibility tests for the rapid detection of multidrug-resistant Mycobacterium tuberculosis isolates. Mem Inst Oswaldo Cruz 110(5):649–654

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Coronel J, Roper MH, Herrera C, Bonilla C, Jave O, Gianella C, Sabogal I, Huancare V, Leo E, Tyas A, Mendoza-Ticona A, Caviedes L, Moore DA (2014) Validation of microscopic observation drug susceptibility testing for rapid, direct rifampicin and isoniazid drug susceptibility testing in patients receiving tuberculosis treatment. Clin Microbiol Infect 20(6):536–541

    CAS  PubMed  Google Scholar 

  21. Cui Z, Wang J, Lu J, Huang X, Zheng R, Hu Z (2013) Evaluation of methods for testing the susceptibility of clinical mycobacterium tuberculosis isolates to pyrazinamide. J Clin Microbiol 51(5):1374–1380

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Devasia RA, Blackman A, May C, Eden S, Smith T, Hooper N, Maruri F, Stratton C, Shintani A, Sterling TR (2009) Fluoroquinolone resistance in Mycobacterium tuberculosis: an assessment of MGIT 960, MODS and nitrate reductase assay and fluoroquinolone cross-resistance. J Antimicrob Chemother 63(6):1173–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dixit P, Singh U, Sharma P, Jain A (2012) Evaluation of nitrate reduction assay, resazurin microtiter assay and microscopic observation drug susceptibility assay for first line antitubercular drug susceptibility testing of clinical isolates of M. tuberculosis. J Microbiol Methods 88(1):122–126

    CAS  PubMed  Google Scholar 

  24. Ferrari ML, Telles MAS, Ferrazoli L, Levy CE, Villares MCB, Moretti ML, Resende MR (2010) Susceptibility of Mycobacterium tuberculosis to first-line antimycobacterial agents in a Brazilian hospital: Assessing the utility of the tetrazolium (MTT) microplate assay. Mem Inst Oswaldo Cruz 105(5):661–664

    CAS  Google Scholar 

  25. Giacomazzi CG, Cespedes-Alvarado CG, Losada-Cabruja EA, McDermott JL, Rojas-Andrade CA, Varnier OE (2010) Rapid diagnosis of tuberculosis and multidrug resistance with the microscopic observation drug susceptibility assay in Ecuador. Int J Tuberc Lung Dis 14(6):786–788

    CAS  PubMed  Google Scholar 

  26. Huang Z, Li G, Chen J, Li W, Xu X, Luo Q, Xiong G, Sun J, Li J (2014) Evaluation of MODS assay for rapid detection of Mycobacterium tuberculosis resistance to second-line drugs in a tertiary care tuberculosis hospital in China. Tuberculosis (Edinb) 94(5):506–510

    CAS  Google Scholar 

  27. Huang Z, Qin C, Du J, Luo Q, Wang Y, Zhang W, Zhang X, Xiong G, Chen J, Xu X, Li W, Li J (2015) Evaluation of the microscopic observation drug susceptibility assay for the rapid detection of MDR-TB and XDR-TB in China: a prospective multicentre study. J Antimicrob Chemother 70(2):456–462

    CAS  PubMed  Google Scholar 

  28. Huang Z, Xiong G, Luo Q, Jiang B, Li W, Xu X, Li J (2014) Evaluation of the performance of the microscopic observation drug susceptibility assay for diagnosis of extrapulmonary tuberculosis in China: A preliminary study. Respirology 19(1):132–137

    PubMed  Google Scholar 

  29. Iftikhar I, Irfan S, Farooqi J, Azizullah Z, Hasan R (2017) Rapid detection of in vitro antituberculous drug resistance among smear-positive respiratory samples using microcolony detection-based direct drug susceptibility testing method. Int J Mycobacteriol 6(2):117–121

    CAS  PubMed  Google Scholar 

  30. Kumar M, Khan IA, Verma V, Kalyan N, Qazi GN (2005) Rapid, inexpensive MIC determination of Mycobacterium tuberculosis isolates by using microplate nitrate reductase assay. Diagn Microbiol Infect Dis 53(2):121–124

    CAS  PubMed  Google Scholar 

  31. Kunte S, Karmarkar A, Dharmashale S, Hatolkar S (2012) Resazurin microtitre assay (REMA) plate A simple, rapid and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Eur Respir J 40

  32. Lazarus RP, Kalaiselvan S, John KR, Michael JS (2012) Evaluation of the microscopic observational drug susceptibility assay for rapid and efficient diagnosis of multi-drug resistant tuberculosis. Ind J Med Microbiol 30(1):64–68

    CAS  Google Scholar 

  33. Limaye K, Kanade S, Nataraj G, Mehta P (2010) Utility of Microscopic Observation of Drug Susceptibility (MODS) assay for Mycobacterium tuberculosis in resource constrained settings. Indian J Tuberc 57(4):207–212

    PubMed  Google Scholar 

  34. Makamure B, Mhaka J, Makumbirofa S, Mutetwa R, Mupfumi L, Mason P, Metcalfe JZ (2013) Microscopic-observation drug-susceptibility assay for the diagnosis of drug-resistant tuberculosis in Harare, Zimbabwe. PLoS One 8(2):e55872

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin A, Paasch F, Docx S, Fissette K, Imperiale B, Ribon W, Gonzalez L, Werngren W, Engstrom A, Skenders G, Jureen P, Hoffner S, Del P, Morcillo N, Palomino JC (2011) Multicentre laboratory validation of the colorimetric redox indicator assay for the rapid detection of extensively drug-resistant Mycobacterium tuberculosis. Clin Microbiol Infect 17:S594

    Google Scholar 

  36. Martin L, Coronel J, Faulx D, Valdez M, Metzler M, Crudder C, Castillo E, Caviedes L, Grandjean L, Rodriguez M, Friedland JS, Gilman RH, Moore DAJ (2014) A field evaluation of the Hardy TB MODS kit™ for the rapid phenotypic diagnosis of tuberculosis and multi-drug resistant tuberculosis. PLoS ONE 9 (9)

  37. Minh H D T, Ngoc L N T, Wolbers M, Kiet VS, Thanh H H T, Duc NH, Huong TM, Bach VM, Phuong T N T, Quyet TV, Bich T N T, Ha VT, Nho NT, Hoa DV, Hoang A P T, Dung NH, Farrar J, Caws M (2012) Evaluation of microscopic observation drug susceptibility assay for diagnosis of multidrug-resistant Tuberculosis in Viet Nam. BMC Infect Dis 12:49

  38. Miyata M, Rogério P, Nakamura S, Biancolino M, Hiroyuki H, Fressati C, de Fiúza MFA, Fujimura LCQ (2013) Comparison of resazurin microtiter assay performance and BACTEC MGIT 960 in the susceptibility testing of Brazilian clinical isolates of Mycobacterium tuberculosis to four first-line drugs. Braz J Microbiol 44(1):281–285

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Montoro E, Lemus D, Echemendia M, Martin A, Portaels F, Palomino JC (2005) Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother 55(4):500–505

    CAS  PubMed  Google Scholar 

  40. Morcillo N, Imperiale B, Di G (2010) Evaluation of MGIT 960™ and the colorimetric-based method for tuberculosis drug susceptibility testing. Int J Tuberc Lung Dis 14(9):1169–1175

    CAS  PubMed  Google Scholar 

  41. Nishiyama H, Aono A, Sugamoto T, Mizuno K, Chikamatsu K, Yamada H, Mitarai S (2014) Optimization of the microscopic observation drug susceptibility assay for four first-line drugs using Mycobacterium tuberculosis reference strains and clinical isolates. J Microbiol Methods 101:44–48

    CAS  PubMed  Google Scholar 

  42. Nour MS, El-Shokry MH, Shehata IH, Abd-El AAM (2013) Evaluation of rezasurin microtiter assay and high resolution melting curve analysis for detection of rifampicin and isoniazid resistance of Mycobacterium tuberculosis clinical isolates. Clin Lab 59(7-8):763–771

    CAS  PubMed  Google Scholar 

  43. Patil SS, Mohite ST, Kulkarni SA, Udgaonkar US (2014) Resazurin tube method: rapid, simple, and inexpensive method for detection of drug resistance in the clinical isolates of mycobacterium tuberculosis. J Glob Infect Dis 6(4):151–156

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rasslan O, Hafez SF, Hashem M, Ahmed OI, Faramawy MA, Khater WS, Saleh DA, Mohamed MI, Khalifa MA, Shoukry FA, El-Moghazy EH (2012) Microscopic observation drug susceptibility assay in the diagnosis of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 16(7):941–946

    CAS  PubMed  Google Scholar 

  45. Sanogo M, Kone B, Diarra B, Maiga M, Baya B, Somboro AM, Sarro YS, Togo ACG, Dembele BPP, Goita D, Kone A, M'Baye O, Coulibaly N, Diabate S, Traore B, Diallo MH, Coulibaly YI, Saleeb P, Belson M, Orsega S, Siddiqui S, Polis MA, Dao S, Murphy RL, Diallo S (2017) Performance of microscopic observation drug susceptibility for the rapid diagnosis of tuberculosis and detection of drug resistance in Bamako, Mali. Clin Microbiol Infect 23(6):408.e401–408.e406

    Google Scholar 

  46. Shah NS, Moodley P, Babaria P, Moodley S, Ramtahal M, Richardson J, Heysell S, Li X, Moll A, Friedland G, Sturm AW, Gandhi NR (2011) Rapid diagnosis of tuberculosis and multidrug resistance by the microscopic-observation drug-susceptibility assay. Am J Respir Crit Care Med 183(10):1427–1433

    PubMed  Google Scholar 

  47. Shinu P, Singh V, Nair A (2016) Isoniazid and rifampin drug susceptibility testing: application of 2,3,5-triphenyl tetrazolium chloride assay and microscopic-observation drug-susceptibility assay directly on Ziehl-Neelsen smear positive sputum specimens. Braz J Infect Dis 20(1):33–40

    PubMed  Google Scholar 

  48. Tan Y, Su B, Zheng H, Wang Y, Pang Y (2017) Prothionamide susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTECMGIT 960 system. Eur J Clin Microbiol Infect Dis 36(5):779–782

    CAS  PubMed  Google Scholar 

  49. Toit K, Mitchell S, Balabanova Y, Evans CA, Kummik T, Nikolayevskyy V, Drobniewski F (2012) The Colour Test for drug susceptibility testing of Mycobacterium tuberculosis strains. Int J Tuberc Lung Dis 16(8):1113–1118

    CAS  PubMed  Google Scholar 

  50. Trollip AP, Moore D, Coronel J, Caviedes L, Klages S, Victor T, Romancenco E, Crudu V, Ajbani K, Vineet VP, Rodrigues C, Jackson RL, Eisenach K, Garfein RS, Rodwell TC, Desmond E, Groessl EJ, Ganiats TG, Catanzaro A (2014) Second-line drug susceptibility breakpoints for Mycobacterium tuberculosis using the MODS assay. Int J Tuberc Lung Dis 18(2):227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu X, Lu W, Shao Y, Liu Q, Shi X, Wang X, Li C, Zhu L, Chen C (2015) The indirect microscopic observation drug susceptibility assay demonstrated high concordance with the indirect MGIT method for pyrazinamide susceptibility testing. J Antimicrob Chemother 70(8):2295–2299

    CAS  PubMed  Google Scholar 

  52. Zadbuke Sonali S, Set R, Khan N, Shastri J (2017) Concurrent evaluation of microscopic observation of drug susceptibility assay for pulmonary and extrapulmonary tuberculosis. J Lab Phys 9(2):89–94

    Google Scholar 

  53. Updated interim critical concentrations for first-line and second-line DST (as of May 2012). Geneva, World Health Organization, 2012 (http://www.stoptb.org/wg/gli/assets/documents/Updated%20critical%20concentration%20table_1st%20and%202nd%20line%20drugs.pdf).

  54. Kruuner A, Yates MD, Drobniewski FA (2006) Evaluation of MGIT 960-based antimicrobial testing and determination of critical concentrations of first- and second-line antimicrobial drugs with drug-resistant clinical strains of Mycobacterium tuberculosis. J Clin Microbiol 44(3):811–818

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Use of high burden country lists for TB by WHO in the post-2015 era. WHO document WHO/HTM/TB/2015.29. WHO, Geneva, 2015.

  56. WHO Global Tuberculosis Report 2017. WHO document WHO/HTM/TB/2017.23 Geneva, WHO, 2017.

  57. Miyata M, Pavan FR, Sato DN, Marino LB, Hirata MH, Cardoso RF, de Melo FAF, Zanelli CF, CQF L (2011) Drug resistance in Mycobacterium tuberculosis clinical isolates from Brazil: Phenotypic and genotypic methods. Biomed Pharmacother 65(6):456–459

    CAS  PubMed  Google Scholar 

  58. Kaniga K, Cirillo DM, Hoffner S, Ismail NA, Kaur D, Lounis N, Metchock B, Pfyffer GE, Venter A (2016) A Multilaboratory, Multicountry Study To Determine MIC Quality Control Ranges for Phenotypic Drug Susceptibility Testing of Selected First-Line Antituberculosis Drugs, Second-Line Injectables, Fluoroquinolones, Clofazimine, and Linezolid. J Clin Microbiol 54(12):2963–2968

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rigouts L, Gumusboga M, De Rijk WB, Nduwamahoro E, Uwizeye C, De Jong B, Van D (2013) Rifampin resistance missed in automated liquid culture system for Mycobacterium tuberculosis isolates with specific rpoB mutations. J Clin Microbiol 51(8):2641–2645

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Miotto P, Tessema B, Tagliani E, Chindelevitch L, Starks AM, Emerson C, Hanna D, Kim PS, Liwski R, Zignol M, Gilpin C, Niemann S, Denkinger CM, Fleming J, Warren RM, Crook D, Posey J, Gagneux S, Hoffner S, Rodrigues C, Comas I, Engelthaler DM, Murray M, Alland D, Rigouts L, Lange C, Dheda K, Hasan R, Ranganathan UDK, McNerney R, Ezewudo M, Cirillo DM, Schito M, Koser CU, Rodwell TC (2017) A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J 50 (6)

  61. Zheng X, Zheng R, Hu Y, Werngren J, Forsman LD, Mansjo M, Xu B, Hoffner S (2016) Determination of MIC Breakpoints for Second-Line Drugs Associated with Clinical Outcomes in Multidrug-Resistant Tuberculosis Treatment in China. Antimicrob Agents Chemother 60(8):4786–4792

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Heyckendorf J, Andres S, Koser CU, Olaru ID, Schon T, Sturegard E, Beckert P, Schleusener V, Kohl TA, Hillemann D, Moradigaravand D, Parkhill J, Peacock SJ, Niemann S, Lange C, Merker M (2018) What Is Resistance? Impact of Phenotypic versus Molecular Drug Resistance Testing on Therapy for Multi- and Extensively Drug-Resistant Tuberculosis. Antimicrob Agents Chemother 62(2)

  63. Schon T, Miotto P, Koser CU, Viveiros M, Bottger E, Cambau E (2017) Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect 23(3):154–160

    CAS  PubMed  Google Scholar 

Download references

Funding

This study received funding from European Centre for Disease Control (Stockholm, Sweden) under Framework Partnership Agreement ECDC/GRANT/2014/001. K.K. was supported by the Estonian Research Council grant (PUT1549).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladyslav Nikolayevskyy.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kontsevaya, I., Werngren, J., Holicka, Y. et al. Non-commercial phenotypic assays for the detection of Mycobacterium tuberculosis drug resistance: a systematic review. Eur J Clin Microbiol Infect Dis 39, 415–426 (2020). https://doi.org/10.1007/s10096-019-03723-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-019-03723-8

Keywords

Navigation