Skip to main content

Advertisement

Log in

Comparison of BD Max Cdiff and GenomEra C. difficile molecular assays for detection of toxigenic Clostridium difficile from stools in conventional sample containers and in FecalSwabs

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

In this study, the usability and performance of GenomEra™ C. difficile and BD Max™ Cdiff nucleic acid amplification tests (NAATs) for the detection of toxigenic Clostridium difficile were investigated in comparison with toxigenic culture and C. difficile toxin A- and toxin B-detecting immunochromatographic antigen (IA) test, the Tox A/B QuikChek®. In total, 302 faecal specimens were collected, 113 of which were in parallel to conventional sample containers and FecalSwab liquid-based microbiology (LBM) tubes. Seventy-nine specimens were considered true-positives for toxigenic C. difficile. The sensitivity and specificity were 97.5 % and 99.6 % and 93.7 % and 98.7 % for the GenomEra and BD Max assays respectively. Toxigenic culture and Tox A/B QuikChek had sensitivity and specificity of 91.1 % and 100 % and 34.2 % and 100 % respectively. Hands-on time for analysing 1 to 24 specimens using NAATs was 1 to 15 min. The rate of PCR inhibition was 0 % for both NAATs with faeces in LBM tubes, while with faeces in conventional sample containers the respective inhibition rates were 5.3 % and 4.4 % for the GenomEra and the BD Max assays. The NAATs demonstrated an excellent analytical performance, reducing significantly the overall workload of laboratory personnel compared with culture and IA test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartlett JG, Gerding DN (2008) Clinical recognition and diagnosis of Clostridium difficile infection. Clin Infect Dis 46:S12–S18. doi:10.1086/521863

    Article  PubMed  Google Scholar 

  2. Karas JA, Enoch DA, Aliyu SH (2010) A review of mortality due to Clostridium difficile infection. J Infect 61:1–8. doi:10.1016/j.jinf.2010.03.025

    Article  CAS  PubMed  Google Scholar 

  3. Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP (2010) The role of toxin A and toxin B in Clostridium difficile infection. Nature 467:711–713. doi:10.1038/nature09397

    Article  CAS  PubMed  Google Scholar 

  4. Lyras D, O’Connor JR, Howarth PM, Sambol SP, Carter GP, Phumoonna T, Poon R, Adams V, Vedantam G, Johnson S, Gerding DN, Rood JI (2009) Toxin B is essential for virulence of Clostridium difficile. Nature 458:1176–1179. doi:10.1038/nature07822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Elliott B, Squire MM, Thean S, Chang BJ, Brazier JS, Rupnik M, Riley TV (2011) New types of toxin A-negative, toxin B-positive strains among clinical isolates of Clostridium difficile in Australia. J Med Microbiol 60:1108–1111. doi:10.1099/jmm. 0.031062-0

    Article  CAS  PubMed  Google Scholar 

  6. Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, Frost E, McDonald LC (2005) Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:1079–1084. doi:10.1016/S0140-6736(05)67420-X

    Article  CAS  PubMed  Google Scholar 

  7. Stewart DB, Berg A, Hegarty J (2013) Predicting recurrence of C. difficile colitis using bacterial virulence factors: binary toxin is the key. J Gastrointest Surg 17:118–124. doi:10.1007/s11605-012-2056-6

    Article  PubMed  Google Scholar 

  8. Dodek PM, Norena M, Ayas NT, Romney M, Wong H (2013) Length of stay and mortality due to Clostridium difficile infection acquired in the intensive care unit. J Crit Care 28:335–340. doi:10.1016/j.jcrc.2012.11.008

    Article  PubMed  Google Scholar 

  9. Arroyo LG, Rousseau J, Willey BM, Low DE, Staempfli H, McGeer A, Weese JS (2005) Use of a selective enrichment broth to recover Clostridium difficile from stool swabs stored under different conditions. J Clin Microbiol 43:5341–5343. doi:10.1128/JCM. 43.10.5341-5343.2005

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bliss DZ, Johnson S, Clabots CR, Savik K, Gerding DN (1997) Comparison of cycloserine-cefoxitin-fructose agar (CCFA) and taurocholate-CCFA for recovery of Clostridium difficile during surveillance of hospitalized patients. Diagn Microbiol Infect Dis 29:1–4

    Article  CAS  PubMed  Google Scholar 

  11. Clabots CR, Gerding SJ, Olson MM, Peterson LR, Gerding DN (1989) Detection of asymptomatic Clostridium difficile carriage by an alcohol shock procedure. J Clin Microbiol 27:2386–2387

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Marler LM, Siders JA, Wolters LC, Pettigrew Y, Skitt BL, Allen SD (1992) Comparison of five cultural procedures for isolation of Clostridium difficile from stools. J Clin Microbiol 30:514–516

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Brazier JS (1998) The diagnosis of Clostridium difficile-associated disease. J Antimicrob Chemother 41:29–40

    Article  CAS  PubMed  Google Scholar 

  14. Bruins MJ, Verbeek E, Wallinga JA, Bruijnesteijn van Coppenraet LE, Kuijper EJ, Bloembergen P (2012) Evaluation of three enzyme immunoassays and a loop-mediated isothermal amplification test for the laboratory diagnosis of Clostridium difficile infection. Eur J Clin Microbiol Infect Dis 31:3035–3039. doi:10.1007/s10096-012-1658-y

    Article  CAS  PubMed  Google Scholar 

  15. Culbreath K, Ager E, Nemeyer RJ, Kerr A, Gilligan PH (2012) Evolution of testing algorithms at a university hospital for detection of Clostridium difficile infections. J Clin Microbiol 50:3073–3076. doi:10.1128/JCM. 00992-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Walkty A, Lagacé-Wiens PR, Manickam K, Adam H, Pieroni P, Hoban D, Karlowsky JA, Alfa M (2013) Laboratory diagnosis of Clostridium difficile infection—evaluation of an algorithmic approach in comparison with the Illumigene® assay. J Clin Microbiol 51:1152–1157. doi:10.1128/JCM. 03203-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Alonso R, Muñoz C, Peláez T, Cercenado E, Rodríguez-Creixems M, Bouza E (1997) Rapid detection of toxigenic Clostridium difficile strains by a nested PCR of the toxin B gene. Clin Microbiol Infect 3:145–147

    Article  CAS  PubMed  Google Scholar 

  18. Bélanger SD, Boissinot M, Clairoux N, Picard FJ, Bergeron MG (2003) Rapid detection of Clostridium difficile in feces by real-time PCR. J Clin Microbiol 41:730–734. doi:10.1128/JCM. 41.2.730-734.2003

    Article  PubMed Central  PubMed  Google Scholar 

  19. Kato H, Kato N, Watanabe K, Iwai N, Nakamura H, Yamamoto T, Suzuki K, Kim SM, Chong Y, Wasito EB (1998) Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. J Clin Microbiol 36:2178–2182

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Dubberke ER, Han Z, Bobo L, Hink T, Lawrence B, Copper S, Hoppe-Bauer J, Burnham CA, Dunne WM Jr (2011) Impact of clinical symptoms on interpretation of diagnostic assays for Clostridium difficile infections. J Clin Microbiol 49:2887–2893. doi:10.1128/JCM. 00891-11

    Article  PubMed Central  PubMed  Google Scholar 

  21. Eastwood K, Else P, Charlett A, Wilcox M (2009) Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods. J Clin Microbiol 47:3211–3217. doi:10.1128/JCM. 01082-09

    Article  PubMed Central  PubMed  Google Scholar 

  22. Buchan BW, Mackey TL, Daly JA, Alger G, Denys GA, Peterson LR, Kehl SC, Ledeboer NA (2012) Multicenter clinical evaluation of the portrait toxigenic C. difficile assay for detection of toxigenic Clostridium difficile strains in clinical stool specimens. J Clin Microbiol 50:3932–3936. doi:10.1128/JCM. 02083-12

    Article  PubMed Central  PubMed  Google Scholar 

  23. Chapin KC, Dickenson RA, Wu F, Andrea SB (2011) Comparison of five assays for detection of Clostridium difficile toxin. J Mol Diagn 13:395–400. doi:10.1016/j.jmoldx.2011.03.004

    Article  PubMed Central  PubMed  Google Scholar 

  24. Le Guern R, Herwegh S, Grandbastien B, Courcol R, Wallet F (2012) Evaluation of a new molecular test, the BD Max Cdiff, for detection of toxigenic Clostridium difficile in fecal samples. J Clin Microbiol 50:3089–3090. doi:10.1128/JCM. 01250-12

    Article  PubMed Central  PubMed  Google Scholar 

  25. Shin BM, Mun SJ, Yoo SJ, Kuak EY (2012) Comparison of BD GeneOhm Cdiff and Seegene Seeplex ACE PCR assays using toxigenic Clostridium difficile culture for direct detection of tcdB from stool specimens. J Clin Microbiol 50:3765–3767. doi:10.1128/JCM. 01440-12

    Article  PubMed Central  PubMed  Google Scholar 

  26. Terhes G, Urbán E, Sóki J, Nacsa E, Nagy E (2009) Comparison of a rapid molecular method, the BD GeneOhm Cdiff assay, to the most frequently used laboratory tests for detection of toxin-producing Clostridium difficile in diarrheal feces. J Clin Microbiol 47:3478–3481. doi:10.1128/JCM. 01133-09

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hirvonen JJ, Mentula S, Kaukoranta S-S (2013) Evaluation of a new automated homogeneous PCR assay, GenomEra C. difficile, for rapid detection of toxigenic Clostridium difficile in fecal specimens. J Clin Microbiol 51:2908–2912. doi:10.1128/JCM. 01083-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Stellrecht KA, Espino AA, Maceira VP, Nattanmai SM, Butt SA, Wroblewski D, Hannett GE, Musser KA (2014) Premarket evaluations of the IMDx C. difficile for Abbott m2000 assay and the BD Max Cdiff assay. J Clin Microbiol 52:1423–1428. doi:10.1128/JCM. 03293-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Quinn CD, Sefers SE, Babiker W, He Y, Alcabasa R, Stratton CW, Carroll KC, Tang Y-W (2010) C. Diff QuikChek Complete enzyme immunoassay provides a reliable first-line method for detection of Clostridium difficile in stool specimens. J Clin Microbiol 48:603–605. doi:10.1128/JCM. 01614-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Crobach MJ, Dekkers OM, Wilcox MH, Kuijper EJ (2009) European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI). Clin Microbiol Infect 15:1053–1066. doi:10.1111/j.1469-0691.2009.03098.x

    Article  CAS  PubMed  Google Scholar 

  31. Brecher SM, Novak-Weekley SM, Nagy E (2013) Laboratory diagnosis of Clostridium difficile infections: there is light at the end of the colon. Clin Infect Dis 57:1175–1181. doi:10.1093/cid/cit424

    Article  PubMed  Google Scholar 

  32. Rousseau C, Poilane I, De Pontual L, Maherault AC, Le Monnier A, Collignon A (2012) Clostridium difficile carriage in healthy infants in the community: a potential reservoir for pathogenic strains. Clin Infect Dis 55:1209–1215. doi:10.1093/cid/cis637

    Article  PubMed  Google Scholar 

  33. Matsuki S, Ozaki E, Shozu M, Inoue M, Shimizu S, Yamaguchi N, Karasawa T, Yamagishi T, Nakamura S (2005) Colonization by Clostridium difficile of neonates in a hospital, and infants and children in three day-care facilities of Kanazawa, Japan. Int Microbiol 8:43–48

    PubMed  Google Scholar 

  34. Kyne L, Warny M, Qamar A, Kelly CP (2000) Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med 342:390–397

    Article  CAS  PubMed  Google Scholar 

  35. Riggs MM, Sethi AK, Zabarsky TF, Eckstein EC, Jump RL, Donskey CJ (2007) Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin Infect Dis 45:992–998. doi:10.1086/521854

    Article  PubMed  Google Scholar 

  36. Pasternack R, Vuorinen P, Kuukankorpi A, Pitkäjärvi T, Miettinen A (1996) Detection of Chlamydia trachomatis infections in women by Amplicor PCR: comparison of diagnostic performance with urine and cervical specimens. J Clin Microbiol 34:995–998

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Hirvonen JJ, Kaukoranta SS (2014) Comparison of FecalSwab and ESwab devices for storage and transportation of diarrheagenic bacteria. J Clin Microbiol 52:2334–2339. doi:10.1128/JCM. 00539-14

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Nancy Lahtinen, Mikaela Eur, and Marianne Nynäs are gratefully acknowledged for their help in sample preparations and workload analysis. We have no conflicts of interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Hirvonen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirvonen, J.J., Kaukoranta, SS. Comparison of BD Max Cdiff and GenomEra C. difficile molecular assays for detection of toxigenic Clostridium difficile from stools in conventional sample containers and in FecalSwabs. Eur J Clin Microbiol Infect Dis 34, 1005–1009 (2015). https://doi.org/10.1007/s10096-015-2320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2320-2

Keywords

Navigation