Skip to main content

Advertisement

Log in

General and advanced diagnostic tools to detect Mycobacterium tuberculosis and their drug susceptibility: a review

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The global control of tuberculosis remains a great challenge from the standpoint of diagnosis, detection of drug resistance, and treatment, because treatment can only be initiated when infection is detected, and is guided by the results of antimicrobial susceptibility testing. To a large extent, non-molecular, immunological, and other biochemical methods are refinements or modifications of conventional methods, with the primary goal of providing more rapid test results. In contrast, molecular methods use novel technologies to detect the presence of Mycobacterium tuberculosis complex and genes conferring drug resistance. As a group, molecular technologies offer the greatest potential for laboratories in resource-rich countries because they have the highest sensitivity and specificity. In resource-poor settings, continued development of affordable, sensitive, and specific diagnostic tools will be required, where the incidence of disease is highest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams B. The impact of ART for HIV on TB. Available online at: http://www.who.int/hiv/topics/artforprevention/williams.pdf

  2. Caminero JA, Sotgiu G, Zumla A, Migliori GB (2010) Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect Dis 10:621–629

    Article  CAS  PubMed  Google Scholar 

  3. Espinal MA, Laszlo A, Simonsen L, Boulahbal F, Kim SJ, Reniero A et al (2001) Global trends in resistance to antituberculosis drugs. World Health Organization-International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance. N Engl J Med 344:1294–1303

    Article  CAS  PubMed  Google Scholar 

  4. World Health Organization (WHO) (2004) Anti-tuberculosis drug resistance in the world: third global report. The WHO/IUATLD Global Project on Anti-tuberculosis Drug Resistance Surveillance, 1999–2002. Available online at: http://whqlibdoc.who.int/publications/2004/9241562854.pdf

  5. World Health Organization (WHO) (2010) Global tuberculosis control: WHO report 2010

  6. Cattamanchi A, Dowdy DW, Davis JL, Worodria W, Yoo S, Joloba M et al (2009) Sensitivity of direct versus concentrated sputum smear microscopy in HIV-infected patients suspected of having pulmonary tuberculosis. BMC Infect Dis 9:53

    Article  PubMed Central  PubMed  Google Scholar 

  7. Richter E, Rüsch-Gerdes S, Hillemann D (2009) Drug-susceptibility testing in TB: current status and future prospects. Expert Rev Respir Med 3:497–510

    Article  CAS  PubMed  Google Scholar 

  8. Sreeramareddy CT, Panduru KV, Menten J, Van den Ende J (2009) Time delays in diagnosis of pulmonary tuberculosis: a systematic review of literature. BMC Infect Dis 9:91

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kumar V, Abbas AK, Aster JC (2012) Robbins basic pathology. Elsevier Health Sciences

  10. Raqib R, Rahman J, Kamaluddin AK, Kamal SM, Banu FA, Ahmed S et al (2003) Rapid diagnosis of active tuberculosis by detecting antibodies from lymphocyte secretions. J Infect Dis 188:364–370

    Article  PubMed  Google Scholar 

  11. Huebner RE, Schein MF, Bass JB Jr (1993) The tuberculin skin test. Clin Infect Dis 17:968–975

    Article  CAS  PubMed  Google Scholar 

  12. Cohn DL, O’Brien RJ, Geiter LJ, Gordin FM, Hershfield E, Horsburgh CR (2000) Targeted tuberculin testing and treatment of latent tuberculosis infection. MMWR Morb Mortal Wkly Rep 49:1–54

    Google Scholar 

  13. Huebner RE, Villarino ME, Snider DE Jr (1992) Tuberculin skin testing and the HIV epidemic. JAMA 267:409–410

    Article  CAS  PubMed  Google Scholar 

  14. Pesanti EL (1994) The negative tuberculin test. Tuberculin, HIV, and anergy panels. Am J Respir Crit Care Med 149:1699–1709

    Article  CAS  PubMed  Google Scholar 

  15. Diel R, Nienhaus A, Lange C, Schaberg T (2006) Cost-optimisation of screening for latent tuberculosis in close contacts. Eur Respir J 28:35–44

    Article  CAS  PubMed  Google Scholar 

  16. Menzies D (1999) Interpretation of repeated tuberculin tests. Boosting, conversion, and reversion. Am J Respir Crit Care Med 159:15–21

    Article  CAS  PubMed  Google Scholar 

  17. Kashyap RS, Rajan AN, Ramteke SS, Agrawal VS, Kelkar SS, Purohit HJ et al (2007) Diagnosis of tuberculosis in an Indian population by an indirect ELISA protocol based on detection of Antigen 85 complex: a prospective cohort study. BMC Infect Dis 7:74

    Article  PubMed Central  PubMed  Google Scholar 

  18. Anochie PI, Onyeneke EC, Ogu AC, Onyeozirila AC, Aluru S, Onyejepu N et al (2012) Recent advances in the diagnosis of Mycobacterium tuberculosis. Germs 2:110–120

    Article  PubMed Central  PubMed  Google Scholar 

  19. Mazurek GH, Jereb J, Vernon A, LoBue P, Goldberg S, Castro K (2010) Updated guidelines for using interferon gamma release assays to detect Mycobacterium tuberculosis infection—United States, 2010. Department of Health and Human Services, Centers for Disease Control and Prevention (CDC), Atlanta, GA

    Google Scholar 

  20. Meier T, Eulenbruch H-P, Wrighton-Smith P, Enders G, Regnath T (2005) Sensitivity of a new commercial enzyme-linked immunospot assay (T SPOT-TB) for diagnosis of tuberculosis in clinical practice. Eur J Clin Microbiol Infect Dis 24:529–536

    Article  CAS  PubMed  Google Scholar 

  21. Bamford ARJ, Crook AM, Clark JE, Nademi Z, Dixon G, Paton JY et al (2010) Comparison of interferon-γ release assays and tuberculin skin test in predicting active tuberculosis (TB) in children in the UK: a paediatric TB network study. Arch Dis Child 95:180–186

    Article  PubMed  Google Scholar 

  22. Mandalakas AM, Detjen AK, Hesseling AC, Benedetti A, Menzies D (2011) Interferon-gamma release assays and childhood tuberculosis: systematic review and meta-analysis. Int J Tuberc Lung Dis 15:1018–1032

    Article  CAS  PubMed  Google Scholar 

  23. Aramă V, Tilişcan C, Ion DA, Mihăilescu R, Munteanu D, Streinu-Cercel A et al (2012) Serum adipokines and HIV viral replication in patients undergoing antiretroviral therapy. Germs 2:12–17

    Article  PubMed Central  PubMed  Google Scholar 

  24. Guaraldi G (2011) Evolving approaches and resources for clinical practice in the management of HIV infection in the HAART era. Germs 1:6–8

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ramos JM, Robledano C, Masiá M, Belda S, Padilla S, Rodríguez JC et al (2012) Contribution of interferon gamma release assays testing to the diagnosis of latent tuberculosis infection in HIV-infected patients: a comparison of QuantiFERON-TB Gold In Tube, T-SPOT.TB and tuberculin skin test. BMC Infect Dis 12:169

    Article  PubMed Central  PubMed  Google Scholar 

  26. Morello JA, Granato PA, Wilson ME, Morton V (2006) Laboratory manual and workbook in microbiology: applications to patient care. McGraw-Hill Higher Education, Boston

    Google Scholar 

  27. Heifets LB, Good RC (1994) Current laboratory methods for the diagnosis of tuberculosis. In: Bloom BR (ed) Tuberculosis: pathogenesis, protection, and control. American Society for Microbiology, Washington, DC, pp 85–110

    Chapter  Google Scholar 

  28. Kent PT, Kubica GP (1985) Public health mycobacteriology: a guide for the level III laboratory. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control (CDC), Atlanta, GA

    Google Scholar 

  29. Apers L, Mutsvangwa J, Magwenzi J, Chigara N, Butterworth A, Mason P et al (2003) A comparison of direct microscopy, the concentration method and the Mycobacteria Growth Indicator Tube for the examination of sputum for acid-fast bacilli. Int J Tuberc Lung Dis 7:376–381

    CAS  PubMed  Google Scholar 

  30. Uddin MKM, Chowdhury MR, Ahmed S, Rahman MT, Khatun R, van Leth F et al (2013) Comparison of direct versus concentrated smear microscopy in detection of pulmonary tuberculosis. BMC Res Notes 6:291

    Article  PubMed Central  PubMed  Google Scholar 

  31. Aber VR, Allen BW, Mitchison DA, Ayuma P, Edwards EA, Keyes AB (1980) Quality control in tuberculosis bacteriology. 1. Laboratory studies on isolated positive cultures and the efficiency of direct smear examination. Tubercle 61:123–133

    Article  CAS  PubMed  Google Scholar 

  32. Huebner RE, Good RC, Tokars JI (1993) Current practices in mycobacteriology: results of a survey of state public health laboratories. J Clin Microbiol 31:771–775

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Kommareddi S, Abramowsky CR, Swinehart GL, Hrabak L (1984) Nontuberculous mycobacterial infections: comparison of the fluorescent auramine-O and Ziehl-Neelsen techniques in tissue diagnosis. Hum Pathol 15:1085–1089

    Article  CAS  PubMed  Google Scholar 

  34. Jain A, Bhargava A, Agarwal SK (2002) A comparative study of two commonly used staining techniques for acid fast bacilli in clinical specimens. Indian J Tuberc 49:161–162

    Google Scholar 

  35. Siddiqi SH (1999) Recent advances in the diagnosis of tuberculosis: an overview. Med Sci 7:31–36

    Google Scholar 

  36. van Cleeff MRA, Kivihya-Ndugga L, Githui W, Nganga L, Odhiambo J, Klatser PR (2003) A comprehensive study of the efficiency of the routine pulmonary tuberculosis diagnostic process in Nairobi. Int J Tuberc Lung Dis 7:186–189

    PubMed  Google Scholar 

  37. Ogbaini-Emovon E (2009) Current trends in the laboratory diagnosis of tuberculosis. Benin J Postgrad Med 11:79–90

    Google Scholar 

  38. Robert GD, Koneman EW, Kim YK (1991) Manual of clinical microbiology. American Society for Microbiology, Washington, DC

    Google Scholar 

  39. Stender H, Lund K, Petersen KH, Rasmussen OF, Hongmanee P, Miörner H et al (1999) Fluorescence in situ hybridization assay using peptide nucleic acid probes for differentiation between tuberculous and nontuberculous mycobacterium species in smears of mycobacterium cultures. J Clin Microbiol 37:2760–2765

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Ramachandran R, Paramasivan CN (2003) What is new in the diagnosis of tuberculosis? Part I; techniques for diagnosis of tuberculosis. Indian J Tuberc 50:133–141

    Google Scholar 

  41. Hasan MM, Hossain MA, Paul SK, Mahmud C, Khan ER, Rahman MM et al (2012) Evaluation of PCR with culture for the diagnosis of pulmonary tuberculosis. Mymensingh Med J 21:399–403

    CAS  PubMed  Google Scholar 

  42. Wiedmann M, Wilson WJ, Czajka J, Luo J, Barany F, Batt CA (1994) Ligase chain reaction (LCR)—overview and applications. PCR Methods Appl 3:S51–S64

    Article  CAS  PubMed  Google Scholar 

  43. Zhu R-Y, Zhang K-X, Zhao M-Q, Liu Y-H, Xu Y-Y, Ju C-M et al (2009) Use of visual loop-mediated isotheral amplification of rimM sequence for rapid detection of Mycobacterium tuberculosis and Mycobacterium bovis. J Microbiol Methods 78:339–343

    Article  CAS  PubMed  Google Scholar 

  44. Pandey BD, Poudel A, Yoda T, Tamaru A, Oda N, Fukushima Y et al (2008) Development of an in-house loop-mediated isothermal amplification (LAMP) assay for detection of Mycobacterium tuberculosis and evaluation in sputum samples of Nepalese patients. J Med Microbiol 57:439–443

  45. Neonakis IK, Spandidos DA, Petinaki E (2011) Use of loop-mediated isothermal amplification of DNA for the rapid detection of Mycobacterium tuberculosis in clinical specimens. Eur J Clin Microbiol Infect Dis 30:937–942

    Article  CAS  PubMed  Google Scholar 

  46. Lee M-F, Chen Y-H, Peng C-F (2009) Evaluation of reverse transcription loop-mediated isothermal amplification in conjunction with ELISA–hybridization assay for molecular detection of Mycobacterium tuberculosis. J Microbiol Methods 76:174–180

    Article  CAS  PubMed  Google Scholar 

  47. Iwamoto T, Sonobe T, Hayashi K (2003) Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J Clin Microbiol 41:2616–2622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Boehme CC, Nabeta P, Henostroza G, Raqib R, Rahim Z, Gerhardt M et al (2007) Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J Clin Microbiol 45:1936–1940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Aryan E, Makvandi M, Farajzadeh A, Huygen K, Bifani P, Mousavi SL et al (2010) A novel and more sensitive loop-mediated isothermal amplification assay targeting IS6110 for detection of Mycobacterium tuberculosis complex. Microbiol Res 165:211–220

    Article  CAS  PubMed  Google Scholar 

  50. Gori A, Bandera A, Marchetti G, Degli Esposti A, Catozzi L, Nardi GP et al (2005) Spoligotyping and Mycobacterium tuberculosis. Emerg Infect Dis 11:1242–1248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Bifani P, Kurepina N, Mathema B, Wang X-M, Kreiswirth B (2009) Genotyping of Mycobacterium tuberculosis clinical isolates using IS6110-based restriction fragment length polymorphism analysis. Methods Mol Biol 551:173–188

    Article  CAS  PubMed  Google Scholar 

  52. Cave MD, Eisenach KD, McDermott PF, Bates JH, Crawford JT (1991) IS6110: conservation of sequence in the Mycobacterium tuberculosis complex and its utilization in DNA fingerprinting. Mol Cell Probes 5:73–80

    Article  CAS  PubMed  Google Scholar 

  53. Caviedes L, Lee T-S, Gilman RH, Sheen P, Spellman E, Lee EH et al (2000) Rapid, efficient detection and drug susceptibility testing of Mycobacterium tuberculosis in sputum by microscopic observation of broth cultures. The Tuberculosis Working Group in Peru. J Clin Microbiol 38:1203–1208

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Minion J, Leung E, Menzies D, Pai M (2010) Microscopic-observation drug susceptibility and thin layer agar assays for the detection of drug resistant tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis 10:688–698

    Article  CAS  PubMed  Google Scholar 

  55. Ranjan KP, Sharma M (2010) An approach to the detection of mycobacteria in clinically suspected cases of urinary tract infection in immunocompromised patients

  56. Seth V, Kabra SK (eds) (2006) Essentials of tuberculosis in children. Jaypee Brothers Medical Publishers, New Delhi

    Google Scholar 

  57. Ang CF, Mendoza M, Bulatao WC, Cajucom MAM (2001) Culture isolation of mycobacteria by MB/BacT system compared to Lowenstein Jensen egg medium culture method. Philipp J Microbiol Infect Dis 30:40–43

    Google Scholar 

  58. Siddiqi SH, Rüsch-Gerdes S (2006) MGIT procedure manual. Foundation for Innovative New Diagnostics, Geneva, Switzerland

    Google Scholar 

  59. Schaberg T, Reichert B, Schülin T, Lode H, Mauch H (1995) Rapid drug susceptibility testing of Mycobacterium tuberculosis using conventional solid media. Eur Respir J 8:1688–1693

    Article  CAS  PubMed  Google Scholar 

  60. Robledo J, Mejia GI, Paniagua L, Martin A, Guzmán A (2008) Rapid detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis by the direct thin-layer agar method. Int J Tuberc Lung Dis 12:1482–1484

    CAS  PubMed  Google Scholar 

  61. Martin A, Paasch F, Von Groll A, Fissette K, Almeida P, Varaine F et al (2009) Thin-layer agar for detection of resistance to rifampicin, ofloxacin and kanamycin in Mycobacterium tuberculosis isolates. Int J Tuberc Lung Dis 13:1301–1304

    CAS  PubMed  Google Scholar 

  62. Mshana RN, Tadesse G, Abate G, Miörner H (1998) Use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide for rapid detection of rifampin-resistant Mycobacterium tuberculosis. J Clin Microbiol 36:1214–1219

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Montoro E, Lemus D, Echemendia M, Martin A, Portaels F, Palomino JC (2005) Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother 55:500–505

    Article  CAS  PubMed  Google Scholar 

  64. Martin A, Morcillo N, Lemus D, Montoro E, da Silva Telles MA, Simboli N et al (2005) Multicenter study of MTT and resazurin assays for testing susceptibility to first-line anti-tuberculosis drugs. Int J Tuberc Lung Dis 9:901–906

  65. Foongladda S, Roengsanthia D, Arjrattanakool W, Chuchottaworn C, Chaiprasert A, Franzblau SG (2002) Rapid and simple MTT method for rifampicin and isoniazid susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc Lung Dis 6:1118–1122

    CAS  PubMed  Google Scholar 

  66. Abate G, Mshana RN, Miörner H (1998) Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 2:1011–1016

    CAS  PubMed  Google Scholar 

  67. Abate G, Aseffa A, Selassie A, Goshu S, Fekade B, WoldeMeskal D et al (2004) Direct colorimetric assay for rapid detection of rifampin-resistant Mycobacterium tuberculosis. J Clin Microbiol 42:871–873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Muzaffar R, Batool S, Aziz F, Naqvi A, Rizvi A (2002) Evaluation of the FASTPlaqueTB assay for direct detection of Mycobacterium tuberculosis in sputum specimens. Int J Tuberc Lung Dis 6:635–640

    CAS  PubMed  Google Scholar 

  69. Albert H, Trollip A, Seaman T, Mole RJ (2004) Simple, phage-based (FASTPplaque) technology to determine rifampicin resistance of Mycobacterium tuberculosis directly from sputum. Int J Tuberc Lung Dis 8:1114–1119

    CAS  PubMed  Google Scholar 

  70. Laboratory Procedure. BBL SEPTI-CHEK AFB. Mycobacteria Culture System. Available online at: https://www.bd.com/ds/technicalCenter/clsi/clsi-sepchekAFB.pdf

  71. Isenberg HD, D’Amato RF, Heifets L, Murray PR, Scardamaglia M, Jacobs MC et al (1991) Collaborative feasibility study of a biphasic system (Roche Septi-Chek AFB) for rapid detection and isolation of mycobacteria. J Clin Microbiol 29:1719–1722

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Woods GL, Fish G, Plaunt M, Murphy T (1997) Clinical evaluation of difco ESP culture system II for growth and detection of mycobacteria. J Clin Microbiol 35:121–124

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Bergmann JS, Woods GL (1998) Evaluation of the ESP culture system II for testing susceptibilities of Mycobacterium tuberculosis isolates to four primary antituberculous drugs. J Clin Microbiol 36:2940–2943

    PubMed Central  CAS  PubMed  Google Scholar 

  74. World Health Organization (WHO) (2008) Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB). Available online at: http://www.who.int/tb/features_archive/policy_statement.pdf

  75. Viveiros M, Leandro C, Rodrigues L, Almeida J, Bettencourt R, Couto I et al (2005) Direct application of the INNO-LiPA Rif.TB line-probe assay for rapid identification of Mycobacterium tuberculosis complex strains and detection of rifampin resistance in 360 smear-positive respiratory specimens from an area of high incidence of multidrug-resistant tuberculosis. J Clin Microbiol 43:4880–4884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Traore H, Fissette K, Bastian I, Devleeschouwer M, Portaels F (2000) Detection of rifampicin resistance in Mycobacterium tuberculosis isolates from diverse countries by a commercial line probe assay as an initial indicator of multidrug resistance. Int J Tuberc Lung Dis 4:481–484

    CAS  PubMed  Google Scholar 

  77. Rossau R, Traore H, De Beenhouwer H, Mijs W, Jannes G, De Rijk P et al (1997) Evaluation of the INNO-LiPA Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampin. Antimicrob Agents Chemother 41:2093–2098

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Quezada CM, Kamanzi E, Mukamutara J, De Rijk P, Rigouts L, Portaels F et al (2007) Implementation validation performed in Rwanda to determine whether the INNO-LiPA Rif.TB line probe assay can be used for detection of multidrug-resistant Mycobacterium tuberculosis in low-resource countries. J Clin Microbiol 45:3111–3114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Morgan M, Kalantri S, Flores L, Pai M (2005) A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect Dis 5:62

    Article  PubMed Central  PubMed  Google Scholar 

  80. Somoskovi A, Song Q, Mester J, Tanner C, Hale YM, Parsons LM et al (2003) Use of molecular methods to identify the Mycobacterium tuberculosis complex (MTBC) and other mycobacterial species and to detect rifampin resistance in MTBC isolates following growth detection with the BACTEC MGIT 960 system. J Clin Microbiol 41:2822–2826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. De Beenhouwer H, Lhiang Z, Jannes G, Mijs W, Machtelinckx L, Rossau R et al (1995) Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay. Tuber Lung Dis 76:425–430

    Article  PubMed  Google Scholar 

  82. Vijdea R, Stegger M, Sosnovskaja A, Andersen AB, Thomsen VØ, Bang D (2008) Multidrug-resistant tuberculosis: rapid detection of resistance to rifampin and high or low levels of isoniazid in clinical specimens and isolates. Eur J Clin Microbiol Infect Dis 27:1079–1086

    Article  CAS  PubMed  Google Scholar 

  83. Somoskovi A, Dormandy J, Mitsani D, Rivenburg J, Salfinger M (2006) Use of smear-positive samples to assess the PCR-based genotype MTBDR assay for rapid, direct detection of the Mycobacterium tuberculosis complex as well as its resistance to isoniazid and rifampin. J Clin Microbiol 44:4459–4463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Miotto P, Piana F, Penati V, Canducci F, Migliori GB, Cirillo DM (2006) Use of genotype MTBDR assay for molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical strains isolated in Italy. J Clin Microbiol 44:2485–2491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Ling DI, Zwerling AA, Pai M (2008) GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J 32:1165–1174

    Article  CAS  PubMed  Google Scholar 

  86. Lacoma A, Garcia-Sierra N, Prat C, Ruiz-Manzano J, Haba L, Rosés S et al (2008) GenoType MTBDRplus assay for molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis strains and clinical samples. J Clin Microbiol 46:3660–3667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Hillemann D, Rüsch-Gerdes S, Richter E (2007) Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 45:2635–2640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Dubois Cauwelaert N, Ramarokoto H, Ravololonandriana P, Richard V, Rasolofo V (2011) DNA extracted from stained sputum smears can be used in the MTBDRplus assay. J Clin Microbiol 49:3600–3603

    Article  PubMed Central  PubMed  Google Scholar 

  89. Bwanga F, Hoffner S, Haile M, Joloba ML (2009) Direct susceptibility testing for multi drug resistant tuberculosis: a meta-analysis. BMC Infect Dis 9:67

    Article  PubMed Central  PubMed  Google Scholar 

  90. Barnard M, Albert H, Coetzee G, O’Brien R, Bosman ME (2008) Rapid molecular screening for multidrug-resistant tuberculosis in a high-volume public health laboratory in South Africa. Am J Respir Crit Care Med 177:787–792

    Article  PubMed  Google Scholar 

  91. Bang D, Bengård Andersen A, Thomsen VØ (2006) Rapid genotypic detection of rifampin- and isoniazid-resistant Mycobacterium tuberculosis directly in clinical specimens. J Clin Microbiol 44:2605–2608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Akpaka PE, Baboolal S, Clarke D, Francis L, Rastogi N (2008) Evaluation of methods for rapid detection of resistance to isoniazid and rifampin in Mycobacterium tuberculosis isolates collected in the Caribbean. J Clin Microbiol 46:3426–3428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Kiet VS, Lan NT, An DD, Dung NH, Hoa DV, van Vinh Chau N et al (2010) Evaluation of the MTBDRsl test for detection of second-line-drug resistance in Mycobacterium tuberculosis. J Clin Microbiol 48:2934–2939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Hillemann D, Rüsch-Gerdes S, Richter E (2009) Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin–capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 47:1767–1772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Brossier F, Veziris N, Aubry A, Jarlier V, Sougakoff W (2010) Detection by GenoType MTBDRsl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex isolates. J Clin Microbiol 48:1683–1689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Nicol M (2010) New developments in the laboratory diagnosis of tuberculosis. Contin Med Educ 28:246–250

    Google Scholar 

  97. Helb D, Jones M, Story E, Boehme C, Wallace E, Ho K et al (2010) Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 48:229–237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Blakemore R, Story E, Helb D, Kop J, Banada P, Owens MR et al (2010) Evaluation of the analytical performance of the Xpert MTB/RIF assay. J Clin Microbiol 48:2495–2501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Caoili JC, Mayorova A, Sikes D, Hickman L, Plikaytis BB, Shinnick TM (2006) Evaluation of the TB-Biochip oligonucleotide microarray system for rapid detection of rifampin resistance in Mycobacterium tuberculosis. J Clin Microbiol 44:2378–2381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Dinnes J, Deeks J, Kunst H, Gibson A, Cummins E, Waugh N et al (2007) A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol Assess 11:1–196

    Article  CAS  PubMed  Google Scholar 

  101. Shivannavar CT, Katoch VM, Sharma VD, Patil MA, Katoch K, Bharadwaj VP et al (1996) Determination of mycobacterial phylogeny on the basis of immunological relatedness of superoxide dismutases. Int J Syst Bacteriol 46:1164–1169

    Article  CAS  PubMed  Google Scholar 

  102. Nakamura RM, Einck L, Velmonte MA, Kawajiri K, Ang CF, Delasllagas CE et al (2001) Detection of active tuberculosis by an MPB-64 transdermal patch: a field study. Scand J Infect Dis 33:405–407

    Article  CAS  PubMed  Google Scholar 

  103. Murray CK, Gasser RA Jr, Magill AJ, Miller RS (2008) Update on rapid diagnostic testing for malaria. Clin Microbiol Rev 21:97–110

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. A. Gazi or Md. R. Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazi, M.A., Islam, M.R., Kibria, M.G. et al. General and advanced diagnostic tools to detect Mycobacterium tuberculosis and their drug susceptibility: a review. Eur J Clin Microbiol Infect Dis 34, 851–861 (2015). https://doi.org/10.1007/s10096-014-2306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2306-5

Keywords

Navigation