Skip to main content

Advertisement

Log in

MicroRNA expressions associated with eosinophilic meningitis caused by Angiostrongylus cantonensis infection in a mouse model

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Angiostrongylus cantonensis (A. cantonensis) infection is the major cause of eosinophilic meningitis (EM). Severe cases or infant and child cases have poor prognosis. MicroRNAs (miRNAs) play important roles in inflammation; however, little is known about the roles in brain inflammation caused by A. cantonensis. In this study, Illumina deep sequencing and bioinformatics were used to determine the abundance and differential expression of miRNAs in the brain tissues of a mouse model. A total of 648 conserved miRNAs were identified, 157 of which were significantly differentially expressed between infected mice and normal mice. The five most fold-changed miRNAs were miR-511-5p, miR-511-3p, miR-223-3p, miR-155-5p and miR-206-3p. These expressions of miR-511, miR-223, miR-155, miR-206, miR-142 and miR-21a were validated by quantitative reverse transcription polymerase chain reaction (RT-PCR). The analysis of these miRNAs showed that miR-511-3p was more abundant than the miR-511-5p strand, and increased to a peak in 21 days after A. cantonensis infection, miR-223 might be a potential indicator of disease severity and the upregulation of miR-155-5p after stimulation with the somatic antigen of phase IV A. cantonensis implied its involvement in the central nervous system (CNS) inflammation induced by A. cantonensis infection. These observations suggest that miRNAs may play important roles in the regulation of EM caused by A. cantonensis infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dorta-Contreras AJ, Padilla-Docal B, Moreira JM, Robles LM, Aroca JM, Alarcón F, Bu-Coifiu-Fanego R (2011) Neuroimmunological findings of Angiostrongylus cantonensis meningitis in Ecuadorian patients. Arq Neuropsiquiatr 69(3):466–469

    Article  PubMed  Google Scholar 

  2. Perez O, Capron M, Lastre M, Venge P, Khalife J, Capron A (1989) Angiostrongylus cantonensis: role of eosinophils in the neurotoxic syndrome (Gordon-like phenomenon). Exp Parasitol 68(4):403–413

    Article  CAS  PubMed  Google Scholar 

  3. Tseng YT, Tsai HC, Sy CL, Lee SS, Wann SR, Wang YH, Chen JK, Wu KS, Chen YS (2011) Clinical manifestations of eosinophilic meningitis caused by Angiostrongylus cantonensis: 18 years’ experience in a medical center in southern Taiwan. J Microbiol Immunol Infect 44(5):382–389

    Article  CAS  PubMed  Google Scholar 

  4. Slom TJ, Cortese MM, Gerber SI, Jones RC, Holtz TH, Lopez AS, Zambrano CH, Sufit RL, Sakolvaree Y, Chaicumpa W, Herwaldt BL, Johnson S (2002) An outbreak of eosinophilic meningitis caused by Angiostrongylus cantonensis in travelers returning from the Caribbean. N Engl J Med 346(9):668–675

    Article  PubMed  Google Scholar 

  5. Li Y, Tang JP, Chen DR, Fu CY, Wang P, Li Z, Wei W, Li H, Dong WQ (2013) The use of albendazole and diammonium glycyrrhizinate in the treatment of eosinophilic meningitis in mice infected with Angiostrongylus cantonensis. J Helminthol 87(1):1–11

    Article  CAS  PubMed  Google Scholar 

  6. OuYang L, Wei J, Wu Z, Zeng X, Li Y, Jia Y, Ma Y, Zhan M, Lei W (2012) Differences of larval development and pathological changes in permissive and nonpermissive rodent hosts for Angiostrongylus cantonensis infection. Parasitol Res 111(4):1547–1557

    Article  PubMed  Google Scholar 

  7. Vohradsky J, Panek J, Vomastek T (2010) Numerical modelling of microRNA-mediated mRNA decay identifies novel mechanism of microRNA controlled mRNA downregulation. Nucleic Acids Res 38(14):4579–4585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Derrick T, Roberts Ch, Rajasekhar M, Burr SE, Joof H, Makalo P, Bailey RL, Mabey DC, Burton MJ, Holland MJ (2013) Conjunctival MicroRNA expression in inflammatory trachomatous scarring. PLoS Negl Trop Dis 7(3):e2117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Jin J, Cheng Y, Zhang Y, Wood W, Peng Q, Hutchison E, Mattson MP, Becker KG, Duan W (2012) Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin. J Neurochem 123(4):477–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chen XS, Collins LJ, Biggs PJ, Penny D (2009) High throughput genome-wide survey of small RNAs from the parasitic protists Giardia intestinalis and Trichomonas vaginalis. Genome Biol Evol 1:165–175

    Article  PubMed  Google Scholar 

  11. Tsai HC, Chen YS, Yen CM (2013) Human parasitic meningitis caused by Angiostrongylus cantonensis infection in Taiwan. Hawaii J Med Public Health 72(6 Suppl 2):26–27

    PubMed Central  PubMed  Google Scholar 

  12. Punyagupta S, Juttijudata P, Bunnag T (1975) Eosinophilic meningitis in Thailand. Clinical studies of 484 typical cases probably caused by Angiostrongylus cantonensis. Am J Trop Med Hyg 24(6 Pt 1):921–931

    CAS  PubMed  Google Scholar 

  13. Lindo JF, Escoffery CT, Reid B, Codrington G, Cunningham-Myrie C, Eberhard ML (2004) Fatal autochthonous eosinophilic meningitis in a Jamaican child caused by Angiostrongylus cantonensis. Am J Trop Med Hyg 70(4):425–428

    CAS  PubMed  Google Scholar 

  14. Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39(Web Server issue):W155–W159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Squadrito ML, Etzrodt M, De Palma M, Pittet MJ (2013) MicroRNA-mediated control of macrophages and its implications for cancer. Trends Immunol 34(7):350–359

    Article  CAS  PubMed  Google Scholar 

  16. Squadrito ML, Pucci F, Magri L, Moi D, Gilfillan GD, Ranghetti A, Casazza A, Mazzone M, Lyle R, Naldini L, De Palma M (2012) miR-511-3p modulates genetic programs of tumor-associated macrophages. Cell Rep 1(2):141–154

    Article  CAS  PubMed  Google Scholar 

  17. Crespo H, Bertolotti L, Juganaru M, Glaria I, de Andrés D, Amorena B, Rosati S, Reina R (2013) Small ruminant macrophage polarization may play a pivotal role on lentiviral infection. Vet Res 44(1):83

    Article  PubMed Central  PubMed  Google Scholar 

  18. Merkerova M, Belickova M, Bruchova H (2008) Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol 81(4):304–310

    Article  CAS  PubMed  Google Scholar 

  19. Zardo G, Ciolfi A, Vian L, Starnes LM, Billi M, Racanicchi S, Maresca C, Fazi F, Travaglini L, Noguera N, Mancini M, Nanni M, Cimino G, Lo-Coco F, Grignani F, Nervi C (2012) Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood 119(17):4034–4046

    Article  CAS  PubMed  Google Scholar 

  20. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451(7182):1125–1129

    Article  CAS  PubMed  Google Scholar 

  21. Wang HJ, Zhang PJ, Chen WJ, Feng D, Jia YH, Xie LX (2012) Four serum microRNAs identified as diagnostic biomarkers of sepsis. J Trauma Acute Care Surg 73(4):850–854

    Article  CAS  PubMed  Google Scholar 

  22. Schaefer JS, Montufar-Solis D, Vigneswaran N, Klein JR (2011) Selective upregulation of microRNA expression in peripheral blood leukocytes in IL-10−/− mice precedes expression in the colon. J Immunol 187(11):5834–5841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zhuang G, Meng C, Guo X, Cheruku PS, Shi L, Xu H, Li H, Wang G, Evans AR, Safe S, Wu C, Zhou B (2012) A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation 125(23):2892–2903

    Article  CAS  PubMed  Google Scholar 

  24. Martinez-Nunez RT, Louafi F, Sanchez-Elsner T (2011) The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem 286(3):1786–1794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Martinez-Nunez RT, Louafi F, Friedmann PS, Sanchez-Elsner T (2009) MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 284(24):16334–16342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Tsitsiou E, Lindsay MA (2009) microRNAs and the immune response. Curr Opin Pharmacol 9(4):514–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Montagner S, Orlandi EM, Merante S, Monticelli S (2013) The role of miRNAs in mast cells and other innate immune cells. Immunol Rev 253(1):12–24

    Article  PubMed  Google Scholar 

  28. Miura P, Amirouche A, Clow C, Bélanger G, Jasmin BJ (2012) Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206. J Neurochem 120(2):230–238. doi:10.1111/j.1471-4159.2011.07583.x

    Article  CAS  PubMed  Google Scholar 

  29. Intapan PM, Niwattayakul K, Sawanyawisuth K, Chotmongkol V, Maleewong W (2007) Cerebrospinal fluid eotaxin and eotaxin-2 levels in human eosinophilic meningitis associated with angiostrongyliasis. Cytokine 39(2):138–141

    Article  CAS  PubMed  Google Scholar 

  30. Lu TX, Sherrill JD, Wen T, Plassard AJ, Besse JA, Abonia JP, Franciosi JP, Putnam PE, Eby M, Martin LJ, Aronow BJ, Rothenberg ME (2012) MicroRNA signature in patients with eosinophilic esophagitis, reversibility with glucocorticoids, and assessment as disease biomarkers. J Allergy Clin Immunol 129(4):1064.e9–1075.e9

    Article  Google Scholar 

  31. Wong CK, Lau KM, Chan IH, Hu S, Lam YY, Choi AO, Lam CW (2013) MicroRNA-21* regulates the prosurvival effect of GM-CSF on human eosinophils. Immunobiology 218(2):255–262

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Beijing Berry Genomic Corporation for providing the scientific assistance. This work was supported by a grant from the National Basic Research Program of China (2010CB530004) and the National Natural Science Foundation of China (grant nos. 81271855 and 81261160324).

Conflict of interest

The authors declare that they have no competing interest.

Author contributions

Conceived and designed the experiments: Z.W. and Y.Z. Performed the experiments: L.Y. and X.Z. Analysed the data: Q.L. and L.Y. Contributed reagents/materials/analysis tools: X.Z., H.Z. and X.S. Wrote the paper: L.Y. Reviewed the manuscript: Z.W., Q.L. and Z.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Wu.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Table S1

Distribution of small RNAs categorisation in the EM model (21d) and controls (Con) (XLS 18 kb)

Table S2

Expression profiles of known miRNAs in the EM model (21d) and control (Con) (XLS 74 kb)

Table S3

The significantly differentially expressed known miRNAs in the EM model (21d) and control (Con) (XLS 50 kb)

Table S4

The enriched KEGG pathways of target genes for differentially expressed miRNAs (XLS 22 kb)

Figure S1

The overall flow of small RNA libraries construction and deep sequencing (JPEG 17 kb)

High resolution (TIFF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Liao, Q., Zeng, X. et al. MicroRNA expressions associated with eosinophilic meningitis caused by Angiostrongylus cantonensis infection in a mouse model. Eur J Clin Microbiol Infect Dis 33, 1457–1465 (2014). https://doi.org/10.1007/s10096-014-2087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2087-x

Keywords

Navigation