Skip to main content

Advertisement

Log in

Molecular characterisation of Escherichia coli isolated from hospitalised children and adults with urinary tract infection

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Urinary tract infection (UTI) is common amongst children and recurs in 10–30 % of cases. The differences between Escherichia coli strains causing UTI among hospitalised children and adults remains to be fully elucidated. Here, we examined the genetic relatedness and virulence gene (VG) profiles of a collection of E. coli causing UTI among hospitalised children and adults. Genetic relatedness among the strains was investigated using random amplified polymorphic DNA (RAPD) analysis and the strains were characterised using a combination of phylogenetic grouping, the ability to form biofilm and the presence of antigen 43 (Ag43) and its five known alleles, as well 20 VGs associated with uropathogenic E. coli (UPEC). RAPD analysis resolved six major clusters, with two clusters (A and B) consisting almost exclusively of E. coli isolated from children. Isolates from children had a higher prevalence of alpha-haemolysin (hlyA, p < 0.05) and group II capsular polysaccharide synthesis genes (kpsMT II, p < 0.01) than adults. In contrast, E. coli strains from adults had a higher prevalence of invasive ibeA (p < 0.05) and Ag43 (agn43) (p < 0.05) genes, and produced significantly (p < 0.001) more biofilm than E. coli from children. Adult isolates also carried significantly (p < 0.05) more agn43 allele RS218 compared to isolates from children, which carried significantly (p < 0.05) more of the agn43 allele bCFT073. Our results suggest that bacterial virulence factors play an important role in UTI among hospitalised children; however, further research will determine whether these findings apply to a larger cohort and other clinical settings for UTI in children and adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mak RH, Kuo H-J (2006) Pathogenesis of urinary tract infection: an update. Curr Opin Pediatr 18:148–152

    Article  PubMed  Google Scholar 

  2. Russo TA, Johnson JR (2003) Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 5:449–456

    Article  PubMed  Google Scholar 

  3. Shaikh N, Morone NE, Bost JE, Farrell MH (2008) Prevalence of urinary tract infection in childhood: a meta-analysis. Pediatr Infect Dis J 27(4):302–308

    Article  PubMed  Google Scholar 

  4. Jakobsson B, Esbjörner E, Hansson S (1999) Minimum incidence and diagnostic rate of first urinary tract infection. Pediatrics 104:222–226

    Article  CAS  PubMed  Google Scholar 

  5. Williams G, Craig JC (2009) Prevention of recurrent urinary tract infection in children. Curr Opin Infect Dis 22:72–76

    Article  PubMed  Google Scholar 

  6. Svanborg C (2013) Urinary tract infections in children: microbial virulence versus host susceptibility. Adv Exp Med Biol 764:205–210

    Article  CAS  PubMed  Google Scholar 

  7. Bien J, Sokolova O, Bozko P (2012) Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol 2012:681473

    Article  PubMed Central  PubMed  Google Scholar 

  8. Foxman B (2002) Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med 133(Suppl 1A):5S–13S

    Article  Google Scholar 

  9. Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140

    Article  CAS  PubMed  Google Scholar 

  10. Ulett GC, Totsika M, Schaale K, Carey AJ, Sweet MJ, Schembri MA (2013) Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Curr Opin Microbiol 16:100–107

    Article  CAS  PubMed  Google Scholar 

  11. Cavalieri SJ, Snyder IS (1982) Effect of Escherichia coli α-hemolysin on human peripheral leukocyte viability in vitro. Infect Immun 36:455–461

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Mobley HL, Green DM, Trifillis AL, Johnson DE, Chippendale GR, Lockatell CV, Jones BD, Warren J (1990) Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun 58(5):1281–1289

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Trifillis AL, Donnenberg MS, Cui X, Russell RG, Utsalo SJ, Mobley HL, Warren JW (1994) Binding to and killing of human renal epithelial cells by hemolytic P-fimbriated E. coli. Kidney Int 46:1083–1091

    Article  CAS  PubMed  Google Scholar 

  14. Johnson JR (1991) Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4(1):80–128

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Smith YC, Rasmussen SB, Grande KK, Conran RM, O’Brien AD (2008) Hemolysin of uropathogenic Escherichia coli evokes extensive shedding of the uroepithelium and hemorrhage in bladder tissue within the first 24 hours after intraurethral inoculation of mice. Infect Immun 76(7):2978–2990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hilbert DW, Paulish-Miller TE, Tan CK, Carey AJ, Ulett GC, Mordechai E, Adelson ME, Gygax SE, Trama JP (2012) Clinical Escherichia coli isolates utilize alpha-hemolysin to inhibit in vitro epithelial cytokine production. Microbes Infect 14:628–638

    Article  CAS  PubMed  Google Scholar 

  17. Wells TJ, Tree JJ, Ulett GC, Schembri MA (2007) Autotransporter proteins: novel targets at the bacterial cell surface. FEMS Microbiol Lett 274:163–172

    Article  CAS  PubMed  Google Scholar 

  18. Ulett GC, Valle J, Beloin C, Sherlock O, Ghigo J-M, Schembri MA (2007) Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect Immun 75(7):3233–3244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mabbett AN, Ulett GC, Watts RE, Tree JJ, Totsika M, Ong CL, Wood JM, Monaghan W, Looke DF, Nimmo GR, Svanborg C, Schembri MA (2009) Virulence properties of asymptomatic bacteriuria Escherichia coli. Int J Med Microbiol 299:53–63

    Article  CAS  PubMed  Google Scholar 

  20. Danese PN, Pratt LA, Dove SL, Kolter R (2000) The outer membrane protein, Antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol Microbiol 37(2):424–432

    Article  CAS  PubMed  Google Scholar 

  21. Lüthje P, Brauner A (2010) Ag43 promotes persistence of uropathogenic Escherichia coli isolates in the urinary tract. J Clin Microbiol 48(6):2316–2317

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zoetendal EG, Akkermans ADL, Akkermans-van Vliet WM, de Visser JAGM, de Vos WM (2001) The host genotype affects the bacterial community in the human gastronintestinal tract. Microb Ecol Health Dis 13(3):129–134

    Article  Google Scholar 

  23. Chen J, Griffiths MW (1998) PCR differentiation of Escherichia coli from other Gram-negative bacteria using primers derived from the nucleotide sequences flanking the gene encoding the universal stress protein. Lett Appl Microbiol 27:369–371

    Article  CAS  PubMed  Google Scholar 

  24. Ramos NL, Saayman ML, Chapman TA, Tucker JR, Smith HV, Faoagali J, Chin JC, Brauner A, Katouli M (2010) Genetic relatedness and virulence gene profiles of Escherichia coli strains isolated from septicaemic and uroseptic patients. Eur J Clin Microbiol Infect Dis 29:15–23

    Article  CAS  PubMed  Google Scholar 

  25. Vollmerhausen TL, Ramos NL, Gündoğdu A, Robinson W, Brauner A, Katouli M (2011) Population structure and uropathogenic virulence-associated genes of fecal Escherichia coli of healthy young and elderly adults. J Med Microbiol 60:574–581

    Article  PubMed  Google Scholar 

  26. Clermont O, Bonacorsi S, Bingen E (2000) Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66(10):4555–4558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Johnson JR, Stell AL (2000) Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 181(1):261–272

    Article  CAS  PubMed  Google Scholar 

  28. Restieri C, Garriss G, Locas MC, Dozois CM (2007) Autotransporter-encoding sequences are phylogenetically distributed among Escherichia coli clinical isolates and reference strains. Appl Environ Microbiol 73(5):1553–1562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Johnson JR, Kuskowski MA, O’Bryan TT, Colodner R, Raz R (2005) Virulence genotype and phylogenetic origin in relation to antibiotic resistance profile among Escherichia coli urine sample isolates from Israeli women with acute uncomplicated cystitis. Antimicrob Agents Chemother 49(1):26–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Johnson JR, O’Bryan TT, Kuskowski M, Maslow JN (2001) Ongoing horizontal and vertical transmission of virulence genes and papA alleles among Escherichia coli blood isolates from patients with diverse-source bacteremia. Infect Immun 69(9):5363–5374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kai-Larsen Y, Lüthje P, Chromek M, Peters V, Wang X, Holm Å, Kádas L, Hedlund KO, Johansson J, Chapman MR, Jacobson SH, Römling U, Agerberth B, Brauner A (2010) Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog 6(7):e1001010

    Article  PubMed Central  PubMed  Google Scholar 

  32. Vollmerhausen TL, Ramos NL, Dzung DTN, Brauner A (2013) Decoctions from Citrus reticulata Blanco seeds protect the uroepithelium against Escherichia coli invasion. J Ethnopharmacol 150(2):770–774

    Article  PubMed  Google Scholar 

  33. Cheng C-H, Tsau Y-K, Kuo C-Y, Su L-H, Lin T-Y (2010) Comparison of extended virulence genotypes for bacteria isolated from pediatric patients with urosepsis, acute pyelonephritis, and acute lobar nephronia. Pediatr Infect Dis J 29(8):736–740

    Article  PubMed  Google Scholar 

  34. Siegfried L, Kmeťová M, Puzová H, Molokáĉová M, Filka J (1994) Virulence-associated factors in Escherichia coli strains isolated from children with urinary tract infections. J Med Microbiol 41:127–132

    Article  CAS  PubMed  Google Scholar 

  35. Keane WF, Welch R, Gekker G, Peterson PK (1987) Mechanism of Escherichia coli α-hemolysin-induced injury to isolated renal tubular cells. Am J Pathol 126:350–357

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Mulvey MA, Schilling JD, Hultgren SJ (2001) Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69:4572–4579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Burns SM, Hull SI (1999) Loss of resistance to ingestion and phagocytic killing by O and K mutants of a uropathogenic Escherichia coli O75:K5 strain. Infect Immun 67(8):3757–3762

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Kim KS, Itabashi H, Gemski P, Sadoff J, Warren RL, Cross AS (1992) The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. J Clin Invest 90(3):897–905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Schembri MA, Dalsgaard D, Klemm P (2004) Capsule shields the function of short bacterial adhesins. J Bacteriol 186(5):1249–1257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Valle J, Da Re S, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, Ghigo J-M (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci U S A 103(33):12558–12563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Klemm P, Hjerrild L, Gjermansen M, Schembri MA (2004) Structure–function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli. Mol Microbiol 51:283–296

    Article  CAS  PubMed  Google Scholar 

  42. Kjærgaard K, Schembri MA, Ramos C, Molin S, Klemm P (2000) Antigen 43 facilitates formation of multispecies biofilms. Environ Microbiol 2(6):695–702

    Article  PubMed  Google Scholar 

  43. Ulett GC, Webb RI, Schembri MA (2006) Antigen-43-mediated autoaggregation impairs motility in Escherichia coli. Microbiology 152:2101–2110

    Article  CAS  PubMed  Google Scholar 

  44. Schembri MA, Hjerrild L, Gjermansen M, Klemm P (2003) Differential expression of the Escherichia coli autoaggregation factor antigen 43. J Bacteriol 185(7):2236–2242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Soto SM, Smithson A, Horcajada JP, Martinez JA, Mensa JP, Vila J (2006) Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic Escherichia coli. Clin Microbiol Infect 12(10):1034–1036

    Article  CAS  PubMed  Google Scholar 

  46. Tapiainen T, Hanni A-M, Salo J, Ikäheimo I, Uhari M (2013) Escherichia coli biofilm formation and recurrences of urinary tract infections in children. Eur J Clin Microbiol Infect Dis. doi:10.1007/s10096-013-1935-4

    PubMed  Google Scholar 

  47. Salo J, Sevander JJ, Tapiainen T, Ikäheimo I, Pokka T, Koskela M, Uhari M (2009) Biofilm formation by Escherichia coli isolated from patients with urinary tract infections. Clin Nephrol 71(5):501–507

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was internally funded by the School of Health and Sport Sciences of the University of the Sunshine Coast.

Conflict of interest

The authors declare that there is no conflict of interest with the organisation that sponsored this research and publications arising from this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Katouli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollmerhausen, T.L., Katouli, M. Molecular characterisation of Escherichia coli isolated from hospitalised children and adults with urinary tract infection. Eur J Clin Microbiol Infect Dis 33, 975–982 (2014). https://doi.org/10.1007/s10096-013-2035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-2035-1

Keywords

Navigation