Skip to main content
Log in

Comparative evaluation of Vitek 2 identification and susceptibility testing of urinary tract pathogens directly and isolated from chromogenic media

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

We evaluated the use of urine specimens for direct identification and antibiotic testing of urinary tract pathogens using the Vitek system. A total of 343 urine specimens from patients with suspected UTI were selected by pyuria and screened by Gram staining to detect bacteriuria. Of those, 132 were analysed after Gram staining, showing a high number of micro-organisms of a single morphological type. Direct susceptibility testing and identification were performed by using the Vitek system. Results were compared using the standard inoculation method based on the incubation of solid media. After sub-culture, 107 specimens grew a significant count of a single species and were used for the comparative analysis. The direct method correctly identified 88 isolates (82.3 %). When compared according to antibiotic susceptibility testing, the error rate was 2.4 % overall with 0.2 % very major, 0.4 % major and 1.8 % minor errors. 84.7 % of the Gram-negative bacilli had a complete susceptibility report in ≤8 h. This method offers the advantage of prompt processing and earlier reporting of complete results for positive urine specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peleg AY, Hooper DC (2010) Hospital-acquired infections due to gramnegative bacteria. N Engl J Med 362:1804–1813

    Article  PubMed  CAS  Google Scholar 

  2. Pezzlo M (1988) Detection of urinary tract infections by rapid methods. Clin Microbiol Rev 1(3):268–280

    PubMed  CAS  Google Scholar 

  3. Foxman B (2002) Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med 113 [Suppl 1A]:5S–13S

    Article  PubMed  Google Scholar 

  4. Broeren MA, Bahçeci S, Vader HL, Arents NL (2011) Screening for urinary tract infection with the Sysmex UF-1000i urine flow cytometer. J Clin Microbiol 49(3):1025–1029

    Article  PubMed  Google Scholar 

  5. Graham JC, Galloway A (2001) The laboratory diagnosis of urinary tract infection. J Clin Pathol 54:911–919

    Article  PubMed  CAS  Google Scholar 

  6. Macgowan AP (2008) Clinical implications of antimicrobial resistance for therapy. J Antimicrob Chemother 62(2):105–114

    Google Scholar 

  7. Galar A, Yuste JR, Espinosa M, Guillén-Grima F, Hernáez-Crespo S, Leiva J (2012) Clinical and economic impact of rapid reporting of bacterial identification and antimicrobial susceptibility results of the most frequently processed specimen types. Eur J Clin Microbiol Infect Dis 31(9):2445–2452

    Article  PubMed  CAS  Google Scholar 

  8. Washington JA, White IC, Laganiere M, Smith L (1981) Detection of significant bacteriuria by microscopic examination of urine. Lab Med 12:294–296

    Google Scholar 

  9. Lamb VA, Dalton HP, Wilkins JR (1976) Electrochemical method for the early detection of urinary tract infections. Am J Clin Pathol 66:91–95

    PubMed  CAS  Google Scholar 

  10. Cardona N, Rojas C, Zabalaga L (2008) Leukocytes in urine and gram tint for the diagnose of urinary infection. Rev Soc Bol Ped 47(2):81–85

    Google Scholar 

  11. Lehmann LE, Hauser S, Malinka T, Klaschik S, Weber SU, Schewe JC, Stüber F, Book M (2011) Rapid qualitative urinary tract infection pathogen identification by SeptiFast real-time PCR. PLoS One 6(2):e17146

    Article  PubMed  CAS  Google Scholar 

  12. Ferreira L, Sanchez-Juanes F, Gonzalez-Avila M, Cembrero-Fucinos D, Herrero-Hernandez A, Gonzalez-Buitrago JM, Muñoz-Bellido JL (2010) Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:2110–2115

    Article  PubMed  CAS  Google Scholar 

  13. Köhling HL, Bittner A, Müller KD, Buer J, Becker M, Rübben H, Rettenmeier AW, Mosel F (2012) Direct identification of bacteria in urine samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and relevance of defensins as interfering factors. J Med Microbiol 61:339–344

    Article  PubMed  Google Scholar 

  14. Bizzini A, Durussel C, Bille J, Greub G, Prod’hom G (2010) Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 48(5):1549–1554

    Article  PubMed  CAS  Google Scholar 

  15. Ferreira L, Vega Castaño S, Sánchez-Juanes F, González M, Herrero A, Muñiz MC, González-Buitrago JM, Muñoz JL (2010) Identifying bacteria usinga matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometer. Comparison with routine methods used in clinical microbiology laboratories. Enferm Infecc Microbiol Clin 28(8):492–497

    Article  PubMed  Google Scholar 

  16. Ilki A, Bekdemir P, Ulger N, Soyletir G (2010) Rapid reporting of urine culture results: impact of the uro-quick screening system. New Microbiol 33(2):147–153

    PubMed  Google Scholar 

  17. Marschal M, Wienke M, Hoering S, Autenrieth IB, Frick JS (2012) Evaluation of 3 different rapid automated systems for diagnosis of urinary tract infections. Diagn Microbiol Infect Dis 72(2):125–130

    Article  PubMed  CAS  Google Scholar 

  18. De Cueto M, Ceballos E, Martínez-Martínez L, Perea EJ, Pascual A (2004) Use of positive blood cultures for direct identification and susceptibility testing with the Vitek 2 system. J Clin Microbiol 42:3734–3738

    Article  PubMed  Google Scholar 

  19. Hansen DS, Jensen AG, Nørskov-Lauritsen N, Skov R, Bruun B (2002) Direct identification and susceptibility testing of enteric bacilli from positive blood cultures using VITEK (GNI+/GNS-GA). Clin Microbiol Infect 8:38–344

    Article  PubMed  CAS  Google Scholar 

  20. Ling TK, Tam PC, Liu ZK, Cheng AF (2001) Evaluation of VITEK 2 rapid identification and susceptibility testing system against gram-negative clinical isolates. J Clin Microbiol 39:2964–2966

    Article  PubMed  CAS  Google Scholar 

  21. Ling TK, Liu ZK, Cheng AF (2003) Evaluation of the VITEK 2 system for rapid direct identification and susceptibility testing of gram-negative bacilli from positive blood cultures. J Clin Microbiol 41:4705–4707

    Article  PubMed  Google Scholar 

  22. Munoz-Dávila MJ, Yagüe G, Albert M, García-Lucas T (2012) Comparative evaluation of Vitek 2 identification and susceptibility testing of Gram-negative rods directly and isolated from BacT/ALERT-positive blood culture bottles. Eur J Clin Microbiol Infect Dis 31(5):663–669

    Article  PubMed  Google Scholar 

  23. Quesada MD, Giménez M, Molinos S, Fernández G, Sánchez MD, Rivelo R, Ramírez A, Banqué G, Ausina V (2010) Performance of VITEK-2 compact and overnight MicroScan panels for direct identification and susceptibility testing of Gram- negative bacilli from positive FAN BacT/ALERT blood culture bottles. Clin Microbiol Infect 16:137–140

    Article  PubMed  CAS  Google Scholar 

  24. Wellstood SA (1986) Direct identification and susceptibility testing by the AutoMicrobic system of gram-negative bacilli from urine specimens. J Clin Microbiol 23(6):1068–1071

    PubMed  CAS  Google Scholar 

  25. Jorgensen JH, Ferraro MJ (1998) Antimicrobial susceptibility testing: general principles and contemporary practices. Clin Infect Dis 26:973–980

    Article  PubMed  CAS  Google Scholar 

  26. Doern GV, Brueggemann AB, Perla R, Daly J, Halkias D, Jones RN, Saubolle MA (1997) Multicenter laboratory evaluation of the bioMérieux Vitek antimicrobial susceptibility testing system with 11 antimicrobial agents versus members of the family Enterobacteriaceae and Pseudomonas aeruginosa. J Clin Microbiol 35(8):2115–2119

    PubMed  CAS  Google Scholar 

  27. Elder BL, Hansen SA, Kellogg JA, Marsik FJ, Zabransky RJ (1997) In: McCurdy BW. (editor) Verification and validation of procedures in the clinical microbiology laboratory. American Society of Microbiology, Washington DC

    Google Scholar 

  28. Zilleruelo G, Donoso E, Martinez G, Cordova M, Bustos ME, Tolstov O (1971) Urinary infection in infants; clinico-bacteriological study and therapeutic evaluation of 3 antibiotics. Rev Chil Pediatr 42(11):661–667

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Munoz-Dávila.

Additional information

This work was partially published as a poster during the Spanish Infectious Disease and Clinical Microbiology Society Congress held in Bilbao in May 2012 and in the Andalusian Society of Clinical Microbiology and Parasitology meeting, which was held during November 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munoz-Dávila, M.J., Roig, M., Yagüe, G. et al. Comparative evaluation of Vitek 2 identification and susceptibility testing of urinary tract pathogens directly and isolated from chromogenic media. Eur J Clin Microbiol Infect Dis 32, 773–780 (2013). https://doi.org/10.1007/s10096-012-1806-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-012-1806-4

Keywords

Navigation