Skip to main content

Advertisement

Log in

Performance of Cepheid® Xpert MTB/RIF® and TB-Biochip® MDR in two regions of Russia with a high prevalence of drug-resistant tuberculosis

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The purpose of this study was to assess the performance of Cepheid® Xpert MTB/RIF® (“Xpert”) and TB-Biochip® MDR (“TB-Biochip”). Sputum specimens from adults with presumptive tuberculosis (TB) were homogenized and split for: (1) direct Xpert and microscopy, and (2) concentration for Xpert, microscopy, culture [Lowenstein–Jensen (LJ) solid media and Mycobacteria Growth Indicator Tube® (MGIT)], indirect drug susceptibility testing (DST) using the absolute concentration method and MGIT, and TB-Biochip. In total, 109 of 238 (45.8 %) specimens were culture-positive for Mycobacterium tuberculosis complex (MTBC), and, of these, 67 isolates were rifampicin resistant (RIF-R) by phenotypic DST and 64/67 (95.5 %) were isoniazid resistant (INH-R). Compared to culture of the same specimen, a single direct Xpert was more sensitive for detecting MTBC [95.3 %, 95 % confidence interval (CI), 90.0–98.3 %] than direct (59.6 %, 95 % CI, 50.2–68.5 %) or concentrated smear (85.3 %, 95 % CI, 77.7–91.1 %) or LJ culture (80.8 %, 95 % CI, 72.4–87.5 %); the specificity was 86.0 % (95 % CI, 78.9–91.3 %). Compared with MGIT DST, Xpert correctly identified 98.2 % (95 % CI, 91.5–99.9 %) of RIF-R and 95.5 % (95 % CI, 85.8–99.2 %) of RIF-susceptible (RIF-S) specimens. In a subset of 104 specimens, the sensitivity of TB-Biochip for MTBC detection compared to culture was 97.3 % (95 % CI, 91.0–99.5 %); the specificity was 78.1 % (95 % CI, 61.5–89.9 %). TB-Biochip correctly identified 100 % (95 % CI, 94.2–100 %) of RIF-R, 94.7 % (95 % CI, 76.7–99.7 %) of RIF-S, 98.2 % (95 % CI, 91.4–99.9 %) of INH-R, and 78.6 % (95 % CI, 52.1–94.2 %) of INH-S specimens compared to MGIT DST. Xpert and Biochip were similar in accuracy for detecting MTBC and RIF resistance compared to conventional culture methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization (WHO) (2011) Global tuberculosis control 2011. WHO report. WHO, Geneva, Switzerland

  2. Institute of Medicine (US) Forum on Drug Discovery, Development, and Translation; Russian Academy of Medical Science (2011) The new profile of drug-resistant tuberculosis in Russia: a global and local perspective: summary of a joint workshop. National Academy of Sciences, Washington DC

    Google Scholar 

  3. Gryadunov D, Mikhailovich V, Lapa S, Roudinskii N, Donnikov M, Pan’kov S et al (2005) Evaluation of hybridisation on oligonucleotide microarrays for analysis of drug-resistant Mycobacterium tuberculosis. Clin Microbiol Infect 11:531–539

    Article  PubMed  CAS  Google Scholar 

  4. Mikhailovich V, Lapa S, Gryadunov D, Sobolev A, Strizhkov B, Chernyh N et al (2001) Identification of rifampin-resistant Mycobacterium tuberculosis strains by hybridization, PCR, and ligase detection reaction on oligonucleotide microchips. J Clin Microbiol 39:2531–2540

    Article  PubMed  CAS  Google Scholar 

  5. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F et al (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363:1005–1015

    Article  PubMed  CAS  Google Scholar 

  6. Boehme CC, Nicol MP, Nabeta P, Michael JS, Gotuzzo E, Tahirli R et al (2011) Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet 377:1495–1505

    Article  PubMed  Google Scholar 

  7. Kent PT, Kubica GP (1985) Public health mycobacteriology: a guide for the level III laboratory. Centers for Disease Control (CDC), Atlanta

    Google Scholar 

  8. World Health Organization (WHO) (1998) Laboratory services in tuberculosis control. Part II: microscopy. WHO, Geneva, Switzerland

  9. Yu MC, Chen HY, Wu MH, Huang WL, Kuo YM, Yu FL et al (2011) Evaluation of the rapid MGIT TBc identification test for culture confirmation of Mycobacterium tuberculosis complex strain detection. J Clin Microbiol 49:802–807

    Article  PubMed  Google Scholar 

  10. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503

    PubMed  CAS  Google Scholar 

  11. Ruiz M, Torres MJ, Llanos AC, Arroyo A, Palomares JC, Aznar J (2004) Direct detection of rifampin- and isoniazid-resistant Mycobacterium tuberculosis in auramine–rhodamine-positive sputum specimens by real-time PCR. J Clin Microbiol 42:1585–1589

    Article  PubMed  CAS  Google Scholar 

  12. Siddiqi SH, Ruesch-Gerdes S (2006) MGIT procedure manual. For BACTEC MGIT 960 TB system. Becton Dickinson, Franklin Lakes

    Google Scholar 

  13. Heifets LB (1991) Drug susceptibility tests in the management of chemotherapy of tuberculosis. In: Heifets LB (ed) Drug susceptibility in the chemotherapy of mycobacterial infections. CRC Press, Boca Raton, pp 89–121

    Google Scholar 

  14. Chang K, Lu W, Wang J, Zhang K, Jia S, Li F et al (2012) Rapid and effective diagnosis of tuberculosis and rifampicin resistance with Xpert MTB/RIF assay: a meta-analysis. J Infect 64:580–588

    Article  PubMed  Google Scholar 

  15. Lawn SD, Brooks SV, Kranzer K, Nicol MP, Whitelaw A, Vogt M et al (2011) Screening for HIV-associated tuberculosis and rifampicin resistance before antiretroviral therapy using the Xpert MTB/RIF assay: a prospective study. PLoS Med 8:e1001067

    Article  PubMed  Google Scholar 

  16. Nicol MP, Workman L, Isaacs W, Munro J, Black F, Eley B et al (2011) Accuracy of the Xpert MTB/RIF test for the diagnosis of pulmonary tuberculosis in children admitted to hospital in Cape Town, South Africa: a descriptive study. Lancet Infect Dis 11:819–824

    Article  PubMed  Google Scholar 

  17. Marlowe EM, Novak-Weekley SM, Cumpio J, Sharp SE, Momeny MA, Babst A et al (2011) Evaluation of the Cepheid Xpert MTB/RIF assay for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. J Clin Microbiol 49:1621–1623

    Article  PubMed  CAS  Google Scholar 

  18. Armand S, Vanhuls P, Delcroix G, Courcol R, Lemaître N (2011) Comparison of the Xpert MTB/RIF test with an IS6110-TaqMan real-time PCR assay for direct detection of Mycobacterium tuberculosis in respiratory and nonrespiratory specimens. J Clin Microbiol 49:1772–1776

    Article  PubMed  Google Scholar 

  19. Apfalter P, Reischl U, Hammerschlag MR (2005) In-house nucleic acid amplification assays in research: how much quality control is needed before one can rely upon the results? J Clin Microbiol 43:5835–5841

    Article  PubMed  CAS  Google Scholar 

  20. Noordhoek GT, van Embden JD, Kolk AH (1996) Reliability of nucleic acid amplification for detection of Mycobacterium tuberculosis: an international collaborative quality control study among 30 laboratories. J Clin Microbiol 34:2522–2525

    PubMed  CAS  Google Scholar 

  21. Scott LE, McCarthy K, Gous N, Nduna M, Van Rie A, Sanne I et al (2011) Comparison of Xpert MTB/RIF with other nucleic acid technologies for diagnosing pulmonary tuberculosis in a high HIV prevalence setting: a prospective study. PLoS Med 8:e1001061

    Article  PubMed  Google Scholar 

  22. Theron G, Peter J, van Zyl-Smit R, Mishra H, Streicher E, Murray S et al (2011) Evaluation of the Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in a high HIV prevalence setting. Am J Respir Crit Care Med 184:132–140

    Article  PubMed  Google Scholar 

  23. Kurbatova EV, Cavanaugh JS, Shah NS, Wright A, Kim H, Metchock B et al (2012) Rifampicin-resistant Mycobacterium tuberculosis: susceptibility to isoniazid and other anti-tuberculosis drugs. Int J Tuberc Lung Dis 16:355–357

    Article  PubMed  CAS  Google Scholar 

  24. Smith SE, Kurbatova EV, Cavanaugh JS, Cegielski JP (2012) Global isoniazid resistance patterns in rifampin-resistant and rifampin-susceptible tuberculosis. Int J Tuberc Lung Dis 16:203–205

    Article  PubMed  CAS  Google Scholar 

  25. Caoili JC, Mayorova A, Sikes D, Hickman L, Plikaytis BB, Shinnick TM (2006) Evaluation of the TB-Biochip oligonucleotide microarray system for rapid detection of rifampin resistance in Mycobacterium tuberculosis. J Clin Microbiol 44:2378–2381

    Article  PubMed  CAS  Google Scholar 

  26. Isakova ZhT (2008) Fast identification of rifampicin-and isoniazid resistance of M. Tuberculosis strains by the “TB-biochip” test system. Georgian Med News (158):15–19

  27. Isakova ZhT (2009) Practical value of the TB-biochip MDR test system in the rapid identification of multidrug-resistant M. tuberculosis strains. Klin Lab Diagn (2):50–51

Download references

Acknowledgments

This work was supported by the United States Agency for International Development (USAID) country mission in Russia.

Conflict of interest

No conflict of interest was reported for all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kaminski.

Additional information

Disclaimer: The conclusions and interpretations of the data presented in this report are solely those of the authors and do not necessarily represent an official position of the CDC.

E.V. Kurbatova and D.A. Kaminski are joint first authors of the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurbatova, E.V., Kaminski, D.A., Erokhin, V.V. et al. Performance of Cepheid® Xpert MTB/RIF® and TB-Biochip® MDR in two regions of Russia with a high prevalence of drug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis 32, 735–743 (2013). https://doi.org/10.1007/s10096-012-1798-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-012-1798-0

Keywords

Navigation