Skip to main content

Advertisement

Log in

Identification of blood and wound isolates of C. canimorsus and C. cynodegmi using VITEK2 and MALDI-TOF

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Capnocytophaga canimorsus and C. cynodegmi are gram negative bacteria that can be transmitted to humans from dogs or cats and cause serious infections. Routine bacteriological methods, including fermentation and phenotypic tests are insufficient to correctly identify C. canimorsus or C. cynodegmi. The aim of this study was to evaluate the performance of VITEK2 and MALDI-TOF in identification of these bacteria. Twenty two isolates that were identified as C. canimorsus / C. cynodegmi by 16S rRNA sequencing were included in the study and were further investigated with VITEK2 and MALDI-TOF. A Capnocytophaga species-specific PCR was used as the reference method. Out of 22 included isolates, the species-specific PCR identified six blood isolates as C. canimorsus and 14 wound isolates as C. cynodegmi. Two isolates could not be identified with the reference method. VITEK2 identified 10/20 isolates correctly to Capnocytophaga spp. MALDI-TOF analysis correctly identified 6/6 C. canimorsus and 13/14 C. cynodegmi isolates. The mean time to identification with VITEK2 was 6 hours whereas MALDI-TOF required approximately 10 minutes per sample. Here we show that MALDI-TOF rapidly identified C. canimorsus and C. cynodegmi and thus constitutes a valuable diagnostic tool in the clinical laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Egenvall A, Hedhammar A, Bonnett BN, Olson P (1999) Survey of the Swedish dog population: age, gender, breed, location and enrollment in animal insurance. Acta Veterinaria Scandinavica 40:231–240

    PubMed  CAS  Google Scholar 

  2. Griego RD, Rosen T, Orengo IF, Wolf JE (1995) Dog, cat, and human bites: a review. J Am Acad Dermatol 33:1019–1029

    Article  PubMed  CAS  Google Scholar 

  3. Abrahamian FM, Goldstein EJ (2011) Microbiology of animal bite wound infections. Clin Microbiol Rev 24:231–246

    Article  PubMed  Google Scholar 

  4. Eefting M, Paardenkooper T (2010) Capnocytophaga canimorsus sepsis. Blood 116:1396

    Article  PubMed  Google Scholar 

  5. Sandoe JA (2004) Capnocytophaga canimorsus endocarditis. J Med Microbiol 53:245–248

    Article  PubMed  Google Scholar 

  6. Lion C, Escande F, Burdin JC (1996) Capnocytophaga canimorsus infections in human: review of the literature and cases report. Eur J Epidemiol 12:521–533

    Article  PubMed  CAS  Google Scholar 

  7. Bobo RA, Newton EJ (1976) A previously undescribed gram-negative bacillus causing septicemia and meningitis. Am J Clin Pathol 65:564–569

    PubMed  CAS  Google Scholar 

  8. Pers C, Gahrn-Hansen B, Frederiksen W (1996) Capnocytophaga canimorsus septicemia in Denmark, 1982–1995: Review of 39 cases. Clin Infect Dis Official Publ Infect Dis Soc Am 23:71–75

    CAS  Google Scholar 

  9. Brenner DJ, Hollis DG, Fanning GR, Weaver RE (1989) Capnocytophaga canimorsus sp. Nov. (formerly cdc group df-2), a cause of septicemia following dog bite, and C. cynodegmi sp. Nov., a cause of localized wound infection following dog bite. J Clin Microbiol 27:231–235

    PubMed  CAS  Google Scholar 

  10. van Dam AP, Jansz A (2011) Capnocytophaga canimorsus infections in the Netherlands: a nationwide survey. Clin Microbiol Infect Official Publ Eur Soc Clin Microbiol Infect Dis 17:312–315

    Google Scholar 

  11. Suzuki M, Kimura M, Imaoka K, Yamada A (2010) Prevalence of capnocytophaga canimorsus and capnocytophaga cynodegmi in dogs and cats determined by using a newly established species-specific PCR. Vet Microbiol 144:172–176

    Article  PubMed  CAS  Google Scholar 

  12. van Dam AP, van Weert A, Harmanus C, Hovius KE, Claas EC, Reubsaet FA (2009) Molecular characterization of capnocytophaga canimorsus and other canine capnocytophaga spp. and assessment by pcr of their frequencies in dogs. J Clin Microbiol 47:3218–3225

    Article  PubMed  Google Scholar 

  13. Garcia-Cia JI, Esteban J, Santos-O'Connor F, Roman A, Soriano F (2004) Mixed bacteremia with Capnocytophaga sputigena and Escherichia coli following bone marrow transplantation: Case report and review. Eur J Clin Microbiol Infect Dis Official Publ Eur Soc Clin Microbiol 23:139–141

    Article  CAS  Google Scholar 

  14. Funke G, Monnet D, deBernardis C, von Graevenitz A, Freney J (1998) Evaluation of the vitek 2 system for rapid identification of medically relevant gram-negative rods. J Clin Microbiol 36:1948–1952

    PubMed  CAS  Google Scholar 

  15. Cherkaoui A, Emonet S, Fernandez J, Schorderet D, Schrenzel J (2011) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of beta-hemolytic streptococci. J Clin Microbiol 49:3004–3005

    Article  PubMed  Google Scholar 

  16. Liguori G, Di Onofrio V, Galle F et al (2010) Candida albicans identification: comparison among nine phenotypic systems and a multiplex pcr. J Prevent Med Hygiene 51:121–124

    CAS  Google Scholar 

  17. Valenza G, Ruoff C, Vogel U, Frosch M, Abele-Horn M (2007) Microbiological evaluation of the new vitek 2 neisseria-haemophilus identification card. J Clin Microbiol 45:3493–3497

    Article  PubMed  Google Scholar 

  18. Anhalt JP, Fenselau C (1975) Identification of bacteria using mass-spectrometry. Anal Chem 47:219–225

    Article  CAS  Google Scholar 

  19. Seng P, Drancourt M, Gouriet F et al (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clinical Infect Dis An Off Publ Infect Dis Soc Am 49:543–551

    CAS  Google Scholar 

  20. Ferreira L, Vega Castano S, Sanchez-Juanes F et al (2010) Identification of brucella by MALDI-TOF mass spectrometry. Fast and reliable identification from agar plates and blood cultures. PLoS One 5:e14235

    Article  PubMed  CAS  Google Scholar 

  21. Dieckmann R, Strauch E, Alter T (2010) Rapid identification and characterization of vibrio species using whole-cell MALDI-TOF mass spectrometry. J Appl Microbiol 109:199–211

    PubMed  CAS  Google Scholar 

  22. Pinto A, Halliday C, Zahra M et al (2011) Matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of yeasts is contingent on robust reference spectra. PLoS One 6:e25712

    Article  PubMed  CAS  Google Scholar 

  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  24. van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907

    Article  PubMed  Google Scholar 

  25. Alatoom AA, Cunningham SA, Ihde SM, Mandrekar J, Patel R (2011) Comparison of direct colony method versus extraction method for identification of gram-positive cocci by use of bruker biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:2868–2873

    Article  PubMed  Google Scholar 

  26. Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL (2011) Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast. J Clin Microbiol 49:1614–1616

    Article  PubMed  CAS  Google Scholar 

  27. Theel ES, Hall L, Mandrekar J, Wengenack NL (2011) Dermatophyte identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49(12):4067–4071

    Google Scholar 

  28. Khawari AA, Myers JW, Ferguson DA Jr, Moorman JP (2005) Sepsis and meningitis due to capnocytophaga cynodegmi after splenectomy. Clin Infect Dis Official Publ Infect Dis Soc Am 40:1709–1710

    Google Scholar 

  29. Sarma PS, Mohanty S (2001) Capnocytophaga cynodegmi cellulitis, bacteremia, and pneumonitis in a diabetic man. J Clin Microbiol 39:2028–2029

    Article  PubMed  CAS  Google Scholar 

  30. Hicklin H, Verghese A, Alvarez S (1987) Dysgonic fermenter 2 septicemia. Rev Infect Dis 9:884–890

    Article  PubMed  CAS  Google Scholar 

  31. Fischer LJ, Weyant RS, White EH, Quinn FD (1995) Intracellular multiplication and toxic destruction of cultured macrophages by capnocytophaga canimorsus. Infect Immun 63:3484–3490

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

PB holds a Postdoc position from Karolinska Institutet and Stockholm County Council. In addition, he has received grants from the Magnus Bergwall and Åke Wiberg foundations as well as from the Karolinska Institutet and Swedish Society for Medical Microbiology. We extend our gratitude to Mrs Britta Loré, Falun Central Hospital for providing clinical strains and epidemiologic data.

Conflict of interest

Nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bergman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zangenah, S., Özenci, V., Boräng, S. et al. Identification of blood and wound isolates of C. canimorsus and C. cynodegmi using VITEK2 and MALDI-TOF. Eur J Clin Microbiol Infect Dis 31, 2631–2637 (2012). https://doi.org/10.1007/s10096-012-1606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-012-1606-x

Keywords

Navigation