Skip to main content
Log in

Which antibiotics and breakpoints should be used for Aeromonas susceptibility testing? Considerations from a comparison of agar dilution and disk diffusion methods using Enterobacteriaceae breakpoints

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Aeromonas species are environmental organisms that are responsible for numerous infections in humans and animals. Their antimicrobial susceptibility is usually evaluated using Enterobacteriaceae breakpoints. Although disk diffusion and minimum inhibitory concentration (MIC)-based methods are important for infectious disease management and epidemiological surveys of resistance, comparisons between these two methods have not been extensively studied for Aeromonas isolates. We propose the first extensive comparison of agar dilution and disk diffusion susceptibility testing methods, performed for 20 antimicrobial agents, including unevaluated or incompletely evaluated antibiotics (ticarcillin with or without clavulanic acid, ertapenem, tigecycline), on 146 Aeromonas isolates affiliated with six Aeromonas species via molecular means. We evaluated the level of agreement between Enterobacteriaceae breakpoints-based methods. Reliable agreement (>95%) was observed for piperacillin, cefotaxime, cefepime, nalidixic acid, ofloxacin, ciprofloxacin, gentamicin, amikacin, tetracycline and cotrimoxazole, whereas marked inconsistencies between the methods were noted for carbapenems, amoxicillin–clavulanic acid, ticarcillin, ticarcillin–clavulanic acid, tobramycin and tigecycline. The results indicate that beta-lactam and aminoglycoside susceptibility testing should be limited to piperacillin, cephems, gentamicin and amikacin. Co-amoxiclav should be avoided given the lack of agreement between the two methods. Adjusting the zone diameter breakpoints for tigecycline and cefoxitin could also improve the agreement to >95% and reduce the error rates to acceptable levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73

    Article  PubMed  CAS  Google Scholar 

  2. Koehler JM, Ashdown LR (1993) In vitro susceptibilities of tropical strains of Aeromonas species from Queensland, Australia, to 22 antimicrobial agents. Antimicrob Agents Chemother 37:905–907

    Article  PubMed  CAS  Google Scholar 

  3. Burgos A, Quindós G, Martínez R, Rojo P, Cisterna R (1990) In vitro susceptibility of Aeromonas caviae, Aeromonas hydrophila and Aeromonas sobria to fifteen antibacterial agents. Eur J Clin Microbiol Infect Dis 9:413–417

    Article  PubMed  CAS  Google Scholar 

  4. Fosse T, Giraud-Morin C, Madinier I (2003) Phenotypes of beta-lactam resistance in the genus Aeromonas. Pathol Biol (Paris) 51:290–296

    Article  CAS  Google Scholar 

  5. Kämpfer P, Christmann C, Swings J, Huys G (1999) In vitro susceptibilities of Aeromonas genomic species to 69 antimicrobial agents. Syst Appl Microbiol 22:662–669

    Article  PubMed  Google Scholar 

  6. Clinical and Laboratory Standard Institute (CLSI) (2006) CLSI document M45A. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. CLSI, Wayne, PA, USA

    Google Scholar 

  7. Clinical and Laboratory Standard Institute (CLSI) (2005) CLSI document M100-S15. Performance standard for antimicrobial susceptibility testing. CLSI, Wayne, PA, USA

    Google Scholar 

  8. Lamy B, Kodjo A; colBVH Study Group, Laurent F (2009) Prospective nationwide study of Aeromonas infections in France. J Clin Microbiol 47:1234–1237

    Article  PubMed  CAS  Google Scholar 

  9. Lamy B, Laurent F, Kodjo A (2010) Validation of a partial rpoB gene sequence as a tool for phylogenetic identification of aeromonads isolated from environmental sources. Can J Microbiol 56:217–228

    Article  PubMed  CAS  Google Scholar 

  10. Comité de l’Antibiogramme de la Société Francaise de Microbiologie (CA-SFM) (2010) Recommandations. Société Française de Microbiologie. SFM, Paris

    Google Scholar 

  11. Luangtongkum T, Morishita TY, El-Tayeb AB, Ison AJ, Zhang Q (2007) Comparison of antimicrobial susceptibility testing of Campylobacter spp. by the agar dilution and the agar disk diffusion methods. J Clin Microbiol 45:590–594

    Article  PubMed  CAS  Google Scholar 

  12. Jorgensen JH (1993) Selection criteria for an antimicrobial susceptibility testing system. J Clin Microbiol 31:2841–2844

    PubMed  CAS  Google Scholar 

  13. National Committee for Clinical Laboratory Standards (NCCLS) (1994) Development of in vitro susceptibility testing criteria and quality control parameters. Approved guideline M23A. NCCLS, Wayne, PA, USA

    Google Scholar 

  14. Clark RB, Lewinski MA, Loeffelholz MJ, Tibbetts RJ (2009) Cumitech 31A. Verification and validation procedures in the clinical microbiology laboratory. Coordinating ed., S.E. Sharp. ASM Press, Washington DC

  15. Mayrhofer S, Domig KJ, Mair C, Zitz U, Huys G, Kneifel W (2008) Comparison of broth microdilution, Etest, and agar disk diffusion methods for antimicrobial susceptibility testing of Lactobacillus acidophilus group members. Appl Environ Microbiol 74:3745–3748

    Article  PubMed  CAS  Google Scholar 

  16. Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233

    Article  PubMed  CAS  Google Scholar 

  17. Fosse T, Giraud-Morin C, Madinier I, Labia R (2003) Sequence analysis and biochemical characterisation of chromosomal CAV-1 (Aeromonas caviae), the parental cephalosporinase of plasmid-mediated AmpC ‘FOX’ cluster. FEMS Microbiol Lett 222:93–98

    Article  PubMed  CAS  Google Scholar 

  18. Walsh TR, Stunt RA, Nabi JA, MacGowan AP, Bennett PM (1997) Distribution and expression of beta-lactamase genes among Aeromonas spp. J Antimicrob Chemother 40:171–178

    Article  PubMed  CAS  Google Scholar 

  19. Rasmussen BA, Keeney D, Yang Y, Bush K (1994) Cloning and expression of a cloxacillin-hydrolyzing enzyme and a cephalosporinase from Aeromonas sobria AER 14M in Escherichia coli: requirement for an E. coli chromosomal mutation for efficient expression of the class D enzyme. Antimicrob Agents Chemother 38:2078–2085

    Article  PubMed  CAS  Google Scholar 

  20. Iaconis JP, Sanders CC (1990) Purification and characterization of inducible beta-lactamases in Aeromonas spp. Antimicrob Agents Chemother 34:44–51

    Article  PubMed  CAS  Google Scholar 

  21. Walsh TR, Payne DJ, MacGowan AP, Bennett PM (1995) A clinical isolate of Aeromonas sobria with three chromosomally mediated inducible beta-lactamases: a cephalosporinase, a penicillinase and a third enzyme, displaying carbapenemase activity. J Antimicrob Chemother 35:271–279

    Article  PubMed  CAS  Google Scholar 

  22. Avison MB, Niumsup P, Walsh TR, Bennett PM (2000) Aeromonas hydrophila AmpH and CepH beta-lactamases: derepressed expression in mutants of Escherichia coli lacking creB. J Antimicrob Chemother 46:695–702

    Article  PubMed  CAS  Google Scholar 

  23. Bakken JS, Sanders CC, Clark RB, Hori M (1988) Beta-lactam resistance in Aeromonas spp. caused by inducible beta-lactamases active against penicillins, cephalosporins, and carbapenems. Antimicrob Agents Chemother 32:1314–1319

    Article  PubMed  CAS  Google Scholar 

  24. Fosse T (2009) Aeromonas, Vibrio and Plesiomonas. In: Courvalin P, Leclerc R, Rice LB (eds) Antibiogram. Editions ESKA and ASM Press, pp 509–518

  25. Fleiss JL (1981) Statistical methods for rates and proportions. John Wiley, New York, NY

    Google Scholar 

  26. Liu CY, Huang YT, Liao CH, Hsueh PR (2008) In vitro activities of tigecycline against clinical isolates of Aeromonas, Vibrio, and Salmonella species in Taiwan. Antimicrobial Agents Chemother 52:2677–2679

    Article  CAS  Google Scholar 

  27. Motyl MR, McKinley G, Janda JM (1985) In vitro susceptibilities of Aeromonas hydrophila, Aeromonas sobria, and Aeromonas caviae to 22 antimicrobial agents. Antimicrob Agents Chemother 28:151–153

    Article  PubMed  CAS  Google Scholar 

  28. Rasmussen BA, Bush K (1997) Carbapenem-hydrolyzing beta-lactamases. Antimicrob Agents Chemother 41:223–232

    PubMed  CAS  Google Scholar 

  29. Rossolini GM, Zanchi A, Chiesurin A, Amicosante G, Satta G, Guglielmetti P (1995) Distribution of cphA or related carbapenemase-encoding genes and production of carbapenemase activity in members of the genus Aeromonas. Antimicrob Agents Chemother 39:346–349

    Article  PubMed  CAS  Google Scholar 

  30. Libisch B, Giske CG, Kovács B, Tóth TG, Füzi M (2008) Identification of the first VIM metallo-beta-lactamase-producing multiresistant Aeromonas hydrophila strain. J Clin Microbiol 46:1878–1880

    Article  PubMed  CAS  Google Scholar 

  31. Hedges RW, Medeiros AA, Cohenford M, Jacoby GA (1985) Genetic and biochemical properties of AER-1, a novel carbenicillin-hydrolyzing beta-lactamase from Aeromonas hydrophila. Antimicrob Agents Chemother 27:479–484

    Article  PubMed  CAS  Google Scholar 

  32. Neuwirth C, Siebor E, Robin F, Bonnet R (2007) First occurrence of an IMP metallo-beta-lactamase in Aeromonas caviae: IMP-19 in an isolate from France. Antimicrob Agents Chemother 51:4486–4488

    Article  PubMed  CAS  Google Scholar 

  33. Greenwood D (1996) Fixed or variable concentrations of beta-lactamase inhibitors in in-vitro tests? J Antimicrob Chemother 38:17–20

    Article  PubMed  CAS  Google Scholar 

  34. Pottumarthy S, Sader HS, Fritsche TR, Jones RN (2005) Susceptibility patterns for amoxicillin/clavulanate tests mimicking the licensed formulations and pharmacokinetic relationships: do the MIC obtained with 2:1 ratio testing accurately reflect activity against beta-lactamase-producing strains of Haemophilus influenzae and Moraxella catarrhalis? Diagn Microbiol Infect Dis 53:225–231

    Article  PubMed  CAS  Google Scholar 

  35. Thomson CJ, Miles RS, Amyes SG (1995) Susceptibility testing with clavulanic acid: fixed concentration versus fixed ratio. Antimicrob Agents Chemother 39:2591–2592

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Members of the colBVH Study Group who participated in this study are: F. Carmagnol (Cannes), E. Chachaty (Institut Gustave Roussy), C. Alba-Sauviat (Chaumont), C. Auvray (Charleville-Mézières), D. Barraud (Gonesse), Z. Benseddik (Chartres), A. Bertrou (Carcassonne), F. Bessis (Cherbourg), H. Biessy (La Rochelle), V. Blanc (Antibes-Juan-les-Pins), Y. Boucaud-Maitre (Lyon), Brunet & Michel (Marseille), B. Cancet (Villeneuve/Lot), J. Carrere (Hyères), A. Cecille (Digne-les-Bains), G. Chambreuil (La Roche/Yon), P. Chantelat (Vesoul), H. Chardon (Aix en Provence), Charrel (Salon de Provence), H. De Montclos (Bourg-en-Bresse), J.W. Decousser (Dourdan; Rambouillet), J.M. Delarbre/A.Gravey (Mulhouse), D. Deligne (Remiremont), C. Denoix (La Réunion), J. Deregnaucourt (Paris (H L. Bellon)), F. Desroys du Roure (Chatellerault), Dubourdieu (Gisors), Z. El Harrif (Libourne), C. Eloy (Troyes), A. Evers (Annonay), C. Febvre (Montbéliard), D. Fevre (Vienne), S. Gabriel (Monaco), M.J. Galanti (Coulommiers), E. Garnotel (Marseille (HIA Laveran)), M. Gavignet (Lavaur), F. Geffroy (Quimper), G. Grise (Elbeuf-Louviers), I. Gros (Saint-Denis), I. Hermes (Saint-Malo), J. Heurte (Beauvais), Heusse (Bayeux), D. Jan (Laval), E. Jaouen (Sablé/Sarthe), S. Laluque (Montluçon), R. Lamarca (Narbonne), B. Lamy (Sète), Laurens (Belfort), A. Le Coustumier (Cahors), E. Lecaillon (Perpignan), C. Lemble (Selestat), M. Leneveu (Poissy; Saint Germain), S. Leotard (Grasse), M.N. Letouzey (Villefranchesur-Saone), Malbrunot (Corbeil-Essonnes), O. Menouni (Montceau-les-Mines), Morel (Le Havre), C. Olive (Fort de France), B. Pangon (Versailles), J.G. Paul (Boulogne-sur-Mer), J.M. Perez (Pte à Pitre), P. Pouedras (Vannes), D. Pressac (Tulle), R. Sanchez (Périgueux), Y. Scat (Pontivy), A. Secher (Dreux), J. Semon (Chalon-sur-Saône), D. Simeon (Langres), C. Simonin (Macon), J.P. Thellier (Château Thierry), B. Tourand (Alès), A. Vachée (Roubaix), Varache (Le Mans), J. Vaucel (St. Brieux), A.C. Vautrin (Saint-Étienne), Verhaeghe (Dunkerke), M. Villemain (Aurillac), L. Villeneuve (Aubagne).

This manuscript has been checked for English language accuracy by American Journal Experts.

Funding

This work was supported by the Association des Biologistes de l’Ouest and by the Laboratoire de Diagnostic Bactériologique de l’Ecole Nationale Vétérinaire de Lyon and is partly supported by the association ADEREMPHA (Association pour la Recherche et le Développement en Microbiologique & Pharmacie).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not required.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to B. Lamy.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Online resource 1

(PDF 21 kb)

Online resource 2

(PDF 119 kb)

Online resource 3

(PDF 24 kb)

Online resource 4

(PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamy, B., Laurent, F., Kodjo, A. et al. Which antibiotics and breakpoints should be used for Aeromonas susceptibility testing? Considerations from a comparison of agar dilution and disk diffusion methods using Enterobacteriaceae breakpoints. Eur J Clin Microbiol Infect Dis 31, 2369–2377 (2012). https://doi.org/10.1007/s10096-012-1578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-012-1578-x

Keywords

Navigation