Skip to main content

Advertisement

Log in

Impact of antibiotic therapy on systemic cytokine expression in pneumococcal pneumonia

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The aim of this study was to compare the evolution of systemic cytokine levels over time in patients with pneumococal pneumonia treated either with β-lactam monotherapy or with combination therapy (β-lactam plus fluoroquinolone). Prospective observational study of hospitalized non-immunocompromised adults with PP. Concentrations of IL-6, IL-8, IL-10, and TNF-α were determined on days 0, 1, 2, 3, 5, and 7. Patients on β-lactam monotherapy were compared with those receiving combination therapy. Fifty-two patients were enrolled in the study. Concentrations of IL-6, IL-8, and IL-10 decreased rapidly in the first days after admission, in accordance with the mean time to defervescence. High levels of IL-6 were found in patients with the worst outcomes, measured by the need for intensive care unit admission and mortality. No major differences in demographic or clinical characteristics or severity of disease were found between patients treated with β-lactam monotherapy and those treated with combination therapy. IL-6 levels fell more rapidly in patients with combination therapy in the first 48 h (p = 0.016). Our data suggest that systemic expression of IL-6 production in patients with PP correlates with prognosis. Initial combination antibiotic therapy produces a faster decrease in this cytokine in the first 48 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ardanuy C, Tubau F, Pallarés R et al (2009) Epidemiology of invasive pneumococcal disease among adult patients in Barcelona before and after pediatric 7-valent pneumococcal conjugate vaccine introduction 1997–2007. Clin Infect Dis 48:57–64

    Article  PubMed  Google Scholar 

  2. Barlett JG, Mundy LM (1995) Community-acquired pneumonia. N Engl J Med 333:1618–1624

    Article  Google Scholar 

  3. Rosón B, Carratalà J, Dorca J et al (2001) Etiology, reasons for hospitalization, risk classes and outcomes of patients with community-acquired pneumonia hospitalized on the basis of conventional admission criteria. Clin Infect Dis 33:158–165

    Article  PubMed  Google Scholar 

  4. Feikin DR, Schuchat A, Kolczak M (2000) Mortality from invasive pneumococcal pneumonia in the era of antibiotic resistance, 1995–1997. Am J Public Health 90:223–229

    Article  CAS  PubMed  Google Scholar 

  5. Garcia-Vidal C, Fernández-Sabé N, Carratalà J et al (2008) Early mortality in patients with community-acquired pneumonia: causes and risk factors. Eur Respir J 32:733–739

    Article  CAS  PubMed  Google Scholar 

  6. Austrian R, Gold J (1964) Pneumococcal bacteremia with especial reference to bacteremic pneumococcal pneumonia. Ann Intern Med 60:759–770

    CAS  PubMed  Google Scholar 

  7. Antunes G, Evans SA, Lordan JL et al (2002) Systemic cytokine levels in community-acquired pneumonia and their association with disease severity. Eur Respir J 20:990–995

    Article  CAS  PubMed  Google Scholar 

  8. Calbo E, Alsina M, Rodríguez-Carballeira M et al (2008) Systemic expression of cytokine production in patients with severe pneumococcal pneumonia: effects of treatment with a β-lactam versus a fluoroquinolone. Antimicrob Agents Chemother 52:2359–2402

    Google Scholar 

  9. Fernández-Serrano S, Dorca J, Coromines M et al (2003) Molecular inflammatory responses measured in blood of patients with severe community-acquired pneumonia. Clin Diagn Lab Immunol 10:813–820

    PubMed  Google Scholar 

  10. Kellum JA, Kong L, Fink MP et al (2007) Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) study. Arch Intern Med 167:1655–1663

    Article  CAS  PubMed  Google Scholar 

  11. Menendez R, Martinez R, Reyes S et al (2009) Biomarkers improve mortality prediction by prognostic scales in community-acquired pneumonia. Thorax 64:587–591

    Article  CAS  PubMed  Google Scholar 

  12. Monton C, Torres A, El-Ebiary M et al (1999) Cytokine expression in severe pneumonia: a bronchoalveolar lavage study. Crit Care Med 27:1745–1753

    Article  CAS  PubMed  Google Scholar 

  13. Örtqvist A, Hedlund J, Wretlind B et al (1995) Diagnostic and prognostic value of Interleukin-6 and C-reactive protein in community-acquired pneumonia. Scand J Infect Dis 27:457–462

    Article  PubMed  Google Scholar 

  14. Xu F, Droemann D, Rupp J et al (2008) Modulation of the inflammatory response to Streptococcus pneumoniae in a model of acute lung tissue infection. Am J Respir Cell Mol Biol 39:522–529

    Article  CAS  PubMed  Google Scholar 

  15. Demartini G, Esposti D, Marthyn P et al (2004) Effect of multiple doses of clarithromycin and amoxicillin on IL-6, IFNgamma and IL-10 plasma levels in patients with community-acquired pneumonia. J Chemother 16:82–85

    CAS  PubMed  Google Scholar 

  16. Choi J, Song M, Kim G et al (2003) Effect of moxifloxacin on production of proinflammatory cytokines from human peripheral blood mononuclear cells. Antimicrob Agents Chemother 47:3704–3707

    Article  CAS  PubMed  Google Scholar 

  17. Dalhoff A, ShalitI I (2003) Immunomodulatory effect of quinolones. Lancet Infect Dis 3:359–371

    Article  CAS  PubMed  Google Scholar 

  18. Clinical Laboratory Standard Institute (CLSI) (2009) Performance standards for antimicrobial susceptibility testing: 19th informational supplement. CLSI document M100-S18. Wayne, PA: CLSI

  19. Clinical and Laboratory Standard Institute (CLSI) (2006) Methods for dilution antimicrobial susceptibility test for bacteria that growth aerobically; approved standard, 7th edn. CLSI documentM7-A6. CLSI, Wayne, PA

    Google Scholar 

  20. Fine MJ, Auble TE, Yealy DM et al (1997) A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med 336:243–250

    Article  CAS  PubMed  Google Scholar 

  21. Waterer GW, Somes GW, Wunderink RG (2001) Monotherapy may be suboptimal for severe bacteremic pneumococcal pneumonia. Arch Intern Med 161:1837–1842

    Article  CAS  PubMed  Google Scholar 

  22. Martinez JA, Horcajada JP, Almela M et al (2003) Addition of a macrolide to a beta-lactam-based empirical antibiotic regimen is associated with lower in-hospital mortality for patients with bacteremic pneumococcal pneumonia. Clin Infect Dis 36:389–395

    Article  CAS  PubMed  Google Scholar 

  23. Baddour LM, Yu VL, Klugman KP et al (2004) Combination therapy lowers mortality among severely ill patients with pneumococcal pneumonia. Am J Respir Crit Care Med 170:440–444

    Article  PubMed  Google Scholar 

  24. Rodriguez A, Mendia A, Sirvent JM et al (2007) Combination antibiotic therapy improves survival in patients with community-acquired pneumonia and shock. Crit Care Med 35:1493–1498

    Article  CAS  PubMed  Google Scholar 

  25. Harbarth S, Garbino J, Pugin J et al (2005) Lack of effect of combination antibiotic therapy on mortality in patients with pneumococcal sepsis. Eur J Clin Microbiol Infect Dis 24:688–690

    Article  CAS  PubMed  Google Scholar 

  26. Aspa J, Rajas O, Rodriguez de Castro F et al (2006) Impact of initial antibiotic choice on mortality from pneumococcal pneumonia. Eur Respir J 27:1010–1019

    CAS  PubMed  Google Scholar 

  27. Heumann D, Barras C, Severin A et al (1994) Gram-positive cell wall stimulates synthesis of tumor necrosis factor alpha and interleukin 6 by human monocytes. Infect Immun 62:2715–2721

    CAS  PubMed  Google Scholar 

  28. Tomasz A, Saukkonen D (1989) The nature of cell wall derived inflammatory components of pneumococci. Pediatr Infect Dis J 8:902–903

    Article  CAS  PubMed  Google Scholar 

  29. Tuomanen E, Rich R, Zak O (1987) Induction of pulmonary inflammation by components of the pneumococcal cell surface. Am Rev Respir Dis 135:869–874

    CAS  PubMed  Google Scholar 

  30. Tuomanen E, Vanholder R, De Paepe P et al (1996) Immunomodulating effects of antibiotics: literature review. Infection 24:275–291

    Article  Google Scholar 

  31. Blaine T, Pollice P, Rosier R et al (1997) Modulation of the production of cytokines in titanium-stimulated human peripheral blood monocytes by pharmacological agents: the role of camp-mediated signaling mechanism. J Bone Jt Surg 79:1519–1528

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants of Fundación Pi I Sunyer; FUCAP (Fundació Catalana de Pneumologia); REIPI RD06/0008 from the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III, Spanish Network for the Research in Infectious Diseases; by FIS (070864); and by Institut d’Investigació Biomèdica de Bellvitge (Dr. Garcia-Vidal).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Garcia-Vidal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padrones, S., Garcia-Vidal, C., Fernández-Serrano, S. et al. Impact of antibiotic therapy on systemic cytokine expression in pneumococcal pneumonia. Eur J Clin Microbiol Infect Dis 29, 1243–1251 (2010). https://doi.org/10.1007/s10096-010-0993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-010-0993-0

Keywords

Navigation