Skip to main content

Advertisement

Log in

The cag PAI is intact and functional but HP0521 varies significantly in Helicobacter pylori isolates from Malaysia and Singapore

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Helicobacter pylori-related disease is at least partially attributable to the genotype of the infecting strain, particularly the presence of specific virulence factors. We investigated the prevalence of a novel combination of H. pylori virulence factors, including the cag pathogenicity island (PAI), and their association with severe disease in isolates from the three major ethnicities in Malaysia and Singapore, and evaluated whether the cag PAI was intact and functional in vitro. Polymerase chain reaction (PCR) was used to detect dupA, cagA, cagE, cagT, cagL and babA, and to type vacA, the EPIYA motifs, HP0521 alleles and oipA ON status in 159 H. pylori clinical isolates. Twenty-two strains were investigated for IL-8 induction and CagA translocation in vitro. The prevalence of cagA, cagE, cagL, cagT, babA, oipA ON and vacA s1 and i1 was >85%, irrespective of the disease state or ethnicity. The prevalence of dupA and the predominant HP0521 allele and EPIYA motif varied significantly with ethnicity (p < 0.05). A high prevalence of an intact cag PAI was found in all ethnic groups; however, no association was observed between any virulence factor and disease state. The novel association between the HP0521 alleles, EPIYA motifs and host ethnicity indicates that further studies to determine the function of this gene are important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yamaoka Y, Kato M, Asaka M (2008) Geographic differences in gastric cancer incidence can be explained by differences between Helicobacter pylori strains. Intern Med 47:1077–1083

    Article  PubMed  Google Scholar 

  2. Lu H, Yamaoka Y, Graham DY (2005) Helicobacter pylori virulence factors: facts and fantasies. Curr Opin Gastroenterol 21(6):653–659

    Article  PubMed  Google Scholar 

  3. Hatakeyama M (2008) SagA of CagA in Helicobacter pylori pathogenesis. Curr Opin Gastroenterol 11(1):30–37

    CAS  Google Scholar 

  4. Tammer I, Brandt S, Hartig R et al (2007) Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology 132(4):1309–1319

    Article  CAS  PubMed  Google Scholar 

  5. Selbach M, Moese S, Hauck CR et al (2002) Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem 277(9):6775–6778

    Article  CAS  PubMed  Google Scholar 

  6. Segal ED, Cha J, Lo J et al (1999) Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci USA 96:14559–14564

    Article  CAS  PubMed  Google Scholar 

  7. Higashi H, Tsutsumi R, Muto S et al (2002) SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295(5555):683–686

    Article  CAS  PubMed  Google Scholar 

  8. Higashi H, Tsutsumi R, Fujita A et al (2002) Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci USA 99(22):14428–14433

    Article  CAS  PubMed  Google Scholar 

  9. Naito M, Yamazaki T, Tsutsumi R et al (2006) Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. Gastroenterology 130:1181–1190

    Article  CAS  PubMed  Google Scholar 

  10. Jones KR, Joo YM, Jang S et al (2009) Polymorphism in the CagA EPIYA motif impacts development of gastric cancer. J Clin Microbiol 47(4):959–968

    Article  CAS  PubMed  Google Scholar 

  11. Basso D, Zambon C-F, Letley DP et al (2008) Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology 135:91–99

    Article  CAS  PubMed  Google Scholar 

  12. Fischer W, Püls J, Buhrdorf R et al (2001) Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 42(5):1337–1348; erratum in Mol Microbiol. 2003 Mar;47(6):1759

    Article  CAS  PubMed  Google Scholar 

  13. Censini S, Lange C, Xiang Z et al (1996) cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA 93(25):14648–14653

    Article  CAS  PubMed  Google Scholar 

  14. Ikenoue T, Maeda S, Ogura K et al (2001) Determination of Helicobacter pylori virulence by simple gene analysis of the cag pathogenicity island. Clin Diagn Lab Immunol 8(1):181–186

    CAS  PubMed  Google Scholar 

  15. Kauser F, Khan AA, Hussain MA et al (2004) The cag pathogenicity island of Helicobacter pylori is disrupted in the majority of patient isolates from different human populations. J Clin Microbiol 42(11):5302–5308

    Article  CAS  PubMed  Google Scholar 

  16. Ali M, Khan AA, Tiwari SK et al (2005) Association between cag-pathogenicity island in Helicobacter pylori isolates from peptic ulcer, gastric carcinoma, and non-ulcer dyspepsia subjects with histological changes. World J Gastroenterol 11(43):6815–6822

    CAS  PubMed  Google Scholar 

  17. Louw JA, Kidd MS, Kummer AF et al (2001) The relationship between Helicobacter pylori infection, the virulence genotypes of the infecting strain and gastric cancer in the African setting. Helicobacter 6(4):268–273

    Article  CAS  PubMed  Google Scholar 

  18. Nilsson C, Sillén A, Eriksson L et al (2003) Correlation between cag pathogenicity island composition and Helicobacter pylori-associated gastroduodenal disease. Infect Immun 71(11):6573–6581

    Article  CAS  PubMed  Google Scholar 

  19. Mattar R, dos Santos AF, Eisig JN et al (2005) No Correlation of babA2 with vacA and cagA genotypes of Helicobacter pylori and grading of gastritis from peptic ulcer disease patients in Brazil. Helicobacter 10(6):601–608

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt H-MA, Andres S, Kaakoush NO et al (2009) The prevalence of the duodenal ulcer promoting gene (dupA) in Helicobacter pylori isolates varies by ethnic group and is not universally associated with disease development: a case–control study. Gut Pathog 1(5):5

    Article  PubMed  CAS  Google Scholar 

  21. Lu H, Hsu P-I, Graham DY et al (2005) Duodenal ulcer promoting gene of Helicobacter pylori. Gastroenterology 128(4):833–848

    Article  CAS  PubMed  Google Scholar 

  22. Argent RH, Burette A, Miendje Deyi VY et al (2007) The presence of dupA in Helicobacter pylori is not significantly associated with duodenal ulceration in Belgium, South Africa, China, or North America. Clin Infect Dis 45(9):1204–1206

    Article  CAS  PubMed  Google Scholar 

  23. Cao P, Lee KJ, Blaser MJ et al (2005) Analysis of hopQ alleles in East Asian and Western strains of Helicobacter pylori. FEMS Microbiol Lett 251(1):37–43

    Article  CAS  PubMed  Google Scholar 

  24. Hisatsune J, Nakayama M, Isomoto H et al (2008) Molecular characterization of Helicobacter pylori VacA induction of IL-8 in U937 cells reveals a prominent role for p38MAPK in activating transcription factor-2, cAMP response element binding protein, and NF-kappaB activation. J Immunol 180:5017–5027

    CAS  PubMed  Google Scholar 

  25. Dunn BE, Cohen H, Blaser MJ (1997) Helicobacter pylori. Clin Microbiol Rev 10(4):720–741

    CAS  PubMed  Google Scholar 

  26. Rhead JL, Letley DP, Mohammadi M et al (2007) A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology 133(3):926–936

    Article  CAS  PubMed  Google Scholar 

  27. Sugimoto M, Zali MR, Yamaoka Y (2009) The association of vacA genotypes and Helicobacter pylori-related gastroduodenal diseases in the Middle East. Eur J Clin Microbiol Infect Dis 28(10):1227–1236

    Article  CAS  PubMed  Google Scholar 

  28. Huang JQ, Zheng GF, Sumanac K et al (2003) Meta-analysis of the relationship between cagA seropositivity and gastric cancer. Gastroenterology 125(6):1636–1644

    Article  PubMed  Google Scholar 

  29. Miehlke S, Kibler K, Kim JG et al (1996) Allelic variation in the cagA gene of Helicobacter pylori obtained from Korea compared to the United States. Am J Gastroenterol 91(7):1322–1325

    CAS  PubMed  Google Scholar 

  30. Sheu SM, Sheu BS, Yang HB et al (2002) Presence of iceA1 but not cagA, cagC, cagE, cagF, cagN, cagT, or orf13 genes of Helicobacter pylori is associated with more severe gastric inflammation in Taiwanese. J Formos Med Assoc 101(1):18–23

    CAS  PubMed  Google Scholar 

  31. Hsu P-I, Hwang I-R, Cittelly D et al (2002) Clinical presentation in relation to diversity within the Helicobacter pylori cag pathogenicity island. Am J Gastroenterol 97:2231–2238

    Article  CAS  PubMed  Google Scholar 

  32. Maeda S, Yoshida H, Ikenoue T et al (1999) Structure of cag pathogenicity island in Japanese Helicobacter pylori isolates. Gut 44(3):336–341

    Article  CAS  PubMed  Google Scholar 

  33. Tan HJ, Rizal AM, Rosmadi MY et al (2005) Distribution of Helicobacter pylori cagA, cagE and vacA in different ethnic groups in Kuala Lumpur, Malaysia. J Gastroenterol Hepatol 20(4):589–594

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt H-MA, Goh KL, Fock KM et al (2009) Distinct cagA EPIYA motifs are associated with ethnic diversity in Malaysia and Singapore. Helicobacter 14:256–263

    Article  CAS  PubMed  Google Scholar 

  35. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  36. Bikandi J, San Millán R, Rementeria A et al (2004) In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction. Bioinformatics 20(5):798–799

    Article  CAS  PubMed  Google Scholar 

  37. Björkholm B, Lundin A, Sillén A et al (2001) Comparison of genetic divergence and fitness between two subclones of Helicobacter pylori. Infect Immun 69(12):7832–7838

    Article  PubMed  Google Scholar 

  38. Alm RA, Ling LS, Moir DT et al (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397(6715):176–180

    Article  PubMed  CAS  Google Scholar 

  39. Yamaoka Y, Malaty HM, Osato MS et al (2000) Conservation of Helicobacter pylori genotypes in different ethnic groups in Houston, Texas. J Infect Dis 181:2083–2086

    Article  CAS  PubMed  Google Scholar 

  40. Yamaoka Y, Kwon DH, Graham DY (2000) A M(r) 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc Natl Acad Sci USA 97(13):7533–7538

    Article  CAS  PubMed  Google Scholar 

  41. Kim YS, Kim N, Kim JM et al (2009) Helicobacter pylori genotyping findings from multiple cultured isolates and mucosal biopsy specimens: strain diversities of Helicobacter pylori isolates in individual hosts. Eur J Gastroenterol Hepatol 21(5):522–528

    Article  PubMed  Google Scholar 

  42. Mizushima T, Sugiyama T, Komatsu Y et al (2001) Clinical relevance of the babA2 genotype of Helicobacter pylori in Japanese clinical isolates. J Clin Microbiol 39(7):2463–2465

    Article  CAS  PubMed  Google Scholar 

  43. Lai CH, Kuo CH, Chen YC et al (2002) High prevalence of cagA- and babA2-positive Helicobacter pylori clinical isolates in Taiwan. J Clin Microbiol 40(10):3860–3862

    Article  CAS  PubMed  Google Scholar 

  44. Chomvarin C, Namwat W, Chaicumpar K et al (2008) Prevalence of Helicobacter pylori vacA, cagA, cagE, iceA and babA2 genotypes in Thai dyspeptic patients. Int J Infect Dis 12(1):30–36

    Article  CAS  PubMed  Google Scholar 

  45. Gerhard M, Lehn N, Neumayer N et al (1999) Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc Natl Acad Sci USA 96(22):12778–12783

    Article  CAS  PubMed  Google Scholar 

  46. Zambon C-F, Navaglia F, Basso D et al (2003) Helicobacter pylori babA2, cagA, and s1 vacA genes work synergistically in causing intestinal metaplasia. J Clin Pathol 56:287–291

    Article  PubMed  Google Scholar 

  47. Zhang Z, Zheng Q, Chen X et al (2008) The Helicobacter pylori duodenal ulcer promoting gene, dupA in China. BMC Gastroenterol 8:49

    Article  PubMed  CAS  Google Scholar 

  48. Han YH, Liu WZ, Zhu HY et al (2004) Clinical relevance of iceA and babA2 genotypes of Helicobacter pylori in a Shanghai population. Chin J Dig Dis 5(4):181–185

    Article  CAS  PubMed  Google Scholar 

  49. Yamaoka Y (2008) Roles of Helicobacter pylori BabA in gastroduodenal pathogenesis. World J Gastroenterol 14(27):4265–4272

    Article  CAS  PubMed  Google Scholar 

  50. Ilver D, Arnqvist A, Ogren J et al (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279:373–377

    Article  CAS  PubMed  Google Scholar 

  51. Fujimoto S, Olaniyi Ojo O, Arnqvist A et al (2007) Helicobacter pylori BabA expression, gastric mucosal injury, and clinical outcome. Clin Gastroenterol Hepatol 5:49–58

    Article  PubMed  CAS  Google Scholar 

  52. Sheu SM, Hung K-H, Sheu BS et al (2009) Association of nonsynonymous substitutions in the intermediate region of the vacA gene of Helicobacter pylori with gastric diseases in Taiwan. J Clin Microbiol 47(1):249–251

    Article  CAS  PubMed  Google Scholar 

  53. Ogiwara H, Graham DY, Yamaoka Y (2008) vacA i-region subtyping. Gastroenterology 134:1267–1278

    Article  PubMed  Google Scholar 

  54. Yamaoka Y, Kodama T, Gutierrez O et al (1999) Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: studies in four different countries. J Clin Microbiol 37(7):2274–2279

    CAS  PubMed  Google Scholar 

  55. Blomstergren A, Lundin A, Nilsson C et al (2004) Comparative analysis of the complete cag pathogenicity island sequence in four Helicobacter pylori isolates. Gene 328:85–93

    Article  CAS  PubMed  Google Scholar 

  56. Devi SM, Ahmed I, Francalacci P et al (2007) Ancestral European roots of Helicobacter pylori in India. BMC Genomics 8:184–192

    Article  PubMed  CAS  Google Scholar 

  57. Azuma T, Yamakawa A, Yamazaki S et al (2004) Distinct diversity of the cag pathogenicity island among Helicobacter pylori strains in Japan. J Clin Microbiol 42(6):2508–2517

    Article  CAS  PubMed  Google Scholar 

  58. McNairn E, Ni Bhriain N, Dorman CJ (1995) Overexpression of the Shigella flexneri genes coding for DNA topoisomerase IV compensates for loss of DNA topoisomerase I: effect on virulence gene expression. Mol Microbiol 15(3):507–517

    Article  CAS  PubMed  Google Scholar 

  59. Atmakuri K, Cascales E, Burton OT et al (2007) Agrobacterium ParA/MinD-like VirC1 spatially coordinates early conjugative DNA transfer reactions. EMBO J 26(10):2540–2551

    Article  CAS  PubMed  Google Scholar 

  60. Tiwari SK, Khan AA, Ahmed KS et al (2005) Polymerase chain reaction based analysis of the cytotoxin associated gene pathogenicity island of Helicobacter pylori from saliva: an approach for rapid molecular genotyping in relation to disease status. J Gastroenterol Hepatol 20(10):1560–1566

    Article  CAS  PubMed  Google Scholar 

  61. Mattar R, Marques SB, Monteiro Mdo S et al (2007) Helicobacter pylori cag pathogenicity island genes: clinical relevance for peptic ulcer disease development in Brazil. J Med Microbiol 56(Pt 1):9–14

    Article  CAS  PubMed  Google Scholar 

  62. Kidd M, Lastovica AJ, Atherton JC et al (2001) Conservation of the cag pathogenicity island is associated with vacA alleles and gastroduodenal disease in South African Helicobacter pylori isolates. Gut 49:11–17

    Article  CAS  PubMed  Google Scholar 

  63. Jenks PJ, Mégraud F, Labigne A (1998) Clinical outcome after infection with Helicobacter pylori does not appear to be reliably predicted by the presence of any of the genes of the cag pathogenicity island. Gut 43:752–758

    CAS  PubMed  Google Scholar 

  64. Ko JS, Seo JK (2002) cag pathogenicity island of Helicobacter pylori in Korean children. Helicobacter 7(4):232–236

    Article  CAS  PubMed  Google Scholar 

  65. Crabtree JE, Farmery SM, Lindley IJD et al (1994) CagA/cytotoxic strains of Helicobacter pylori and interleukin-8 in gastric epithelial cell lines. J Clin Pathol 47:945–950

    Article  CAS  PubMed  Google Scholar 

  66. Eaton KA, Kersulyte D, Mefford M et al (2001) Role of Helicobacter pylori cag region genes in colonization and gastritis in two animal models. Infect Immun 69(5):2902–2908

    Article  CAS  PubMed  Google Scholar 

  67. Audibert C, Burucoa C, Janvier B et al (2001) Implication of the structure of the Helicobacter pylori cag pathogenicity island in induction of interleukin-8 secretion. Infect Immun 69(3):1625–1629

    Article  CAS  PubMed  Google Scholar 

  68. Yamaoka Y, El-Zimaity HM, Gutierrez O et al (1999) Relationship between the cagA 3′ repeat region of Helicobacter pylori, gastric histology, and susceptibility to low pH. Gastroenterology 117(2):342–349

    Article  CAS  PubMed  Google Scholar 

  69. Azuma T, Yamakawa A, Yamazaki S et al (2002) Correlation between variation of the 3′ region of the cagA gene in Helicobacter pylori and disease outcome in Japan. J Infect Dis 186(11):1621–1630

    Article  CAS  PubMed  Google Scholar 

  70. Zhou J, Zhang J, Xu C et al (2004) cagA genotype and variants in Chinese Helicobacter pylori strains and relationship to gastroduodenal diseases. J Med Microbiol 53:231–235

    Article  CAS  PubMed  Google Scholar 

  71. Argent RH, Zhang Y, Atherton JC (2005) Simple method for determination of the number of Helicobacter pylori CagA variable-region EPIYA tyrosine phosphorylation motifs by PCR. J Clin Microbiol 43(2):791–795

    Article  CAS  PubMed  Google Scholar 

  72. Ando T, Peek RM Jr, Lee Y-C et al (2002) Host cell responses to genotypically similar Helicobacter pylori isolates from United States and Japan. Clin Diagn Lab Immunol 9(1):167–175

    PubMed  Google Scholar 

  73. Franco AT, Johnston E, Krishna U et al (2008) Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res 68(2):379–387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AGS cells were kindly donated by Dr. Laura Plant, Swedish Institute for Infectious Disease Control (Smittskyddsinstitutet), and the Microbiology and Tumour Biology Centre at Karolinska Institutet, Solna, Sweden. This work was supported by the Cancer Council of New South Wales, Australia (REF 66/04). Sönke Andres was supported by a grant from the Marie Curie Early Stage Research Training Fellowship of the European Community’s 6th Framework Program, under contract number MEST-CT-2004-8475.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mitchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, HM.A., Andres, S., Nilsson, C. et al. The cag PAI is intact and functional but HP0521 varies significantly in Helicobacter pylori isolates from Malaysia and Singapore. Eur J Clin Microbiol Infect Dis 29, 439–451 (2010). https://doi.org/10.1007/s10096-010-0881-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-010-0881-7

Keywords

Navigation