Skip to main content

Advertisement

Log in

New antimicrobial agents as therapy for resistant gram-positive cocci

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Vancomycin- and methicillin-resistant gram-positive cocci have emerged as an increasingly problematic cause of hospital-acquired infections. We conducted a literature review of newer antibiotics with activity against vancomycin-resistant and methicillin-resistant gram-positive cocci. Quinupristin/dalfopristin, linezolid, daptomycin, and tigecycline have in vitro activity for methicillin-resistant staphylococci and are superior to vancomycin for vancomycin-resistant isolates. Dalbavancin, telavancin, and oritavancin are new glycopeptides that have superior pharmacodynamic properties compared to vancomycin. We review the antibacterial spectrum, clinical indications and contraindications, pharmacologic properties, and adverse events associated with each of these agents. Daptomycin has rapid bactericidal activity for Staphylococcus aureus and is approved for use in bacteremia and right-sided endocarditis. Linezolid is comparable to vancomycin in patients with methicillin-resistant S. aureus (MRSA) pneumonia and has pharmacoeconomic advantages given its oral formulation. Quinupristin/dalfopristin is the drug of choice for vancomycin-resistant Enterococcus faecium infections but has no activity against Enterococcus faecalis. Tigecycline has activity against both enterococcus species and MRSA; it is also active against Enterobacteriaceae and anaerobes which allows for use in intra-abdominal and diabetic foot infections. A review of numerous in vitro and animal model studies shows that interaction between these newer agents and other antistaphylococcal agents for S. aureus are usually indifferent (additive).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foster JK, Lentino JR, Strodtman R, DiVincenzo C (1986) Comparison of in vitro activity of quinolone antibiotics and vancomycin against gentamicin- and methicillin-resistant Staphylococcus aureus by time-kill kinetic studies. Antimicrob Agents Chemother 30:823–827

    PubMed  CAS  Google Scholar 

  2. Tallent SM, Bischoff T, Climo M, Ostrowsky B, Wenzel RP, Edmond MB (2002) Vancomycin susceptibility of oxacillin-resistant Staphylococcus aureus isolates causing nosocomial bloodstream infections. J Clin Microbiol 40:2249–2250

    Article  PubMed  CAS  Google Scholar 

  3. Sieradzki K, Leski T, Dick J, Borio L, Tomasz A (2003) Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo: multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics administered for chemotherapy. J Clin Microbiol 41:1687–1693

    Article  PubMed  CAS  Google Scholar 

  4. Murray BE (1997) Vancomycin-resistant enterococci. Am J Med 102:284–293

    Article  PubMed  CAS  Google Scholar 

  5. Okuma K, Iwakawa K, Turnidge JD et al (2002) Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 40:4289–4294

    Article  PubMed  CAS  Google Scholar 

  6. Schwalbe RS, Stapleton JT, Gilligan PH (1987) Emergence of vancomycin resistance in coagulase-negative staphylococci. N Engl J Med 316:927–931

    Article  PubMed  CAS  Google Scholar 

  7. Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC (1997) Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40:135–136

    Article  PubMed  CAS  Google Scholar 

  8. Appelbaum PC (2006) MRSA-the tip of the iceberg. Clin Microbiol Infect 12(Suppl 2):3–10

    Article  PubMed  CAS  Google Scholar 

  9. Centers for Disease Control and Prevention (CDC) (2002) Staphylococcus aureus resistant to vancomycin-United States 2002. MMRW Morb Mortal Wkly Rep 51(26):565–567

    Google Scholar 

  10. Chang S, Sievert DM, Hageman JC et al (2003) Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 348:1342–1347

    Article  PubMed  Google Scholar 

  11. King MD, Humphrey BJ, Wang YF, Kourbatova EV, Ray SM, Blumberg HM (2006) Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann Intern Med 144:309–317

    PubMed  Google Scholar 

  12. Moellering RC Jr (2006) The growing menace of community-acquired methicillin-resistant Staphylococcus aureus. Ann Intern Med 144:368–370

    PubMed  Google Scholar 

  13. Noskin GA, Rubin RJ, Schentag JJ et al (2005) The burden of Staphylococcus aureus infections on hospitals in the United States: an analysis of the 2000 and 2001 Nationwide Inpatient Sample Database. Arch Intern Med 165:1756–1761

    Article  PubMed  Google Scholar 

  14. Rupp ME, Archer GL (1994) Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 19:231–243, quiz 244–245

    PubMed  CAS  Google Scholar 

  15. Schaaff F, Reipert A, Bierbaum G (2002) An elevated mutation frequency favors development of vancomycin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 46:3540–3548

    Article  PubMed  CAS  Google Scholar 

  16. Chang FY, Peacock JE Jr, Musher DM et al (2003) Staphylococcus aureus bacteremia: recurrence and the impact of antibiotic treatment in a prospective multicenter study. Medicine (Baltimore) 82:333–339

    Article  CAS  Google Scholar 

  17. Markowitz N, Quinn EL, Saravolatz LD (1992) Trimethoprim-sulfamethoxazole compared with vancomycin for the treatment of Staphylococcus aureus infection. Ann Intern Med 117:390–398

    PubMed  CAS  Google Scholar 

  18. Becker K, Friedrich AW, Lubritz G, Weilert M, Peters G, Von Eiff C (2003) Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. J Clin Microbiol 41:1434–1439

    Article  PubMed  CAS  Google Scholar 

  19. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532

    Article  PubMed  CAS  Google Scholar 

  20. Sakoulas G, Moellering RC Jr, Eliopoulos GM (2006) Adaptation of methicillin-resistant Staphylococcus aureus in the face of vancomycin therapy. Clin Infect Dis 42(Suppl 1):S40–S50

    Article  PubMed  CAS  Google Scholar 

  21. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  PubMed  CAS  Google Scholar 

  22. Caiazza NC, O’Toole GA (2003) Alpha-toxin is required for biofilm formation by Staphylococcus aureus. J Bacteriol 185:3214–3217

    Article  PubMed  CAS  Google Scholar 

  23. von Eiff C, Peters G, Heilmann C (2002) Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2:677–685

    Article  Google Scholar 

  24. McDonald LC, Kuehnert MJ, Tenover FC, Jarvis WR (1997) Vancomycin-resistant enterococci outside the health-care setting: prevalence, sources, and public health implications. Emerg Infect Dis 3:311–317

    Article  PubMed  CAS  Google Scholar 

  25. Ferguson JK (1999) Vancomycin-resistant enterococci: causes and control. Med J Aust 171:117–118

    PubMed  CAS  Google Scholar 

  26. Collignon PJ (1999) Vancomycin-resistant enterococci and use of avoparcin in animal feed: is there a link? Med J Aust 171:144–146

    PubMed  CAS  Google Scholar 

  27. Yu VL, Chiou CC, Feldman C et al (2003) An international prospective study of pneumococcal bacteremia: correlation with in vitro resistance, antibiotics administered, and clinical outcome. Clin Infect Dis 37:230–237

    Article  PubMed  CAS  Google Scholar 

  28. Peterson LR (2006) Penicillins for treatment of pneumococcal pneumonia: does in vitro resistance really matter? Clin Infect Dis 42:224–233

    Article  PubMed  CAS  Google Scholar 

  29. Lonks JR, Garau J, Gomez L et al (2002) Failure of macrolide antibiotic treatment in patients with bacteremia due to erythromycin-resistant Streptococcus pneumoniae. Clin Infect Dis 35:556–564

    Article  PubMed  CAS  Google Scholar 

  30. Schentag JJ, Klugman KP, Yu VL et al (2007) Streptococcus pneumoniae bacteremias: pharmacodynamic correlations with outcome and macrolide resistance: a controlled study. Int J Antimicrob Agents 30:264–269

    Article  PubMed  CAS  Google Scholar 

  31. Greenberg DDR, Klugman K, Madhi SA, Feldman C, Roberts S, Morris A, Chedid MBF, Chiou CC, Yu VL (2004) Streptococcus pneumoniae serotypes causing meningitis in children and adults. 44th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC

  32. Carpenter CF, Chambers HF (2004) Daptomycin: another novel agent for treating infections due to drug-resistant gram-positive pathogens. Clin Infect Dis 38:994–1000

    Article  PubMed  CAS  Google Scholar 

  33. Fenton C, Keating GM, Curran MP (2004) Daptomycin. Drugs 64:445–455, discussion 457–458

    Article  PubMed  CAS  Google Scholar 

  34. Steenbergen JN, Alder J, Thorne GM, Tally FP (2005) Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother 55:283–288

    Article  PubMed  CAS  Google Scholar 

  35. Schriever CA, Fernandez C, Rodvold KA, Danziger LH (2005) Daptomycin: a novel cyclic lipopeptide antimicrobial. Am J Health Syst Pharm 62:1145–1158

    PubMed  CAS  Google Scholar 

  36. Moellering RC (2003) Linezolid: the first oxazolidinone antimicrobial. Ann Intern Med 138:135–142

    PubMed  CAS  Google Scholar 

  37. Birmingham MC, Rayner CR, Meagher AK, Flavin SM, Batts DH, Schentag JJ (2003) Linezolid for the treatment of multidrug-resistant, gram-positive infections: experience from a compassionate-use program. Clin Infect Dis 36:159–168

    Article  PubMed  CAS  Google Scholar 

  38. LaPlante KL, Rybak MJ (2004) Daptomycin—a novel antibiotic against Gram- positive pathogens. Expert Opin Pharmacother 5:2321–2331

    Article  PubMed  CAS  Google Scholar 

  39. Jeu L, Fung HB (2004) Daptomycin: a cyclic lipopeptide antimicrobial agent. Clin Ther 26:1728–1757

    Article  PubMed  CAS  Google Scholar 

  40. Alder JD (2005) Daptomycin: a new drug class for the treatment of Gram-positive infections. Drugs Today (Barc) 41:81–90

    Article  CAS  Google Scholar 

  41. Livermore DM (2005) Tigecycline: what is it, and where should it be used? J Antimicrob Chemother 56:611–614

    Article  PubMed  CAS  Google Scholar 

  42. Pankey GA (2005) Tigecycline. J Antimicrob Chemother 56:470–480

    Article  PubMed  CAS  Google Scholar 

  43. Van Bambeke F, Van Laethem Y, Courvalin P, Tulkens PM (2004) Glycopeptide antibiotics: from conventional molecules to new derivatives. Drugs 64:913–936

    Article  PubMed  Google Scholar 

  44. Virginlar NMA (2004) Glycopeptides (Dalbavancin, Oritavancin, Teicoplanin, Vancomycin). In: Yu VL (ed) Antimicrobial therapy and vaccines, vol II: antimicrobial agents: http://www.antimicrobe.org

  45. Hershberger E, Donabedian S, Konstantinou K, Zervos MJ (2004) Quinupristin-dalfopristin resistance in gram-positive bacteria: mechanism of resistance and epidemiology. Clin Infect Dis 38:92–98

    Article  PubMed  CAS  Google Scholar 

  46. Speciale A, La Ferla K, Caccamo F, Nicoletti G (1999) Antimicrobial activity of quinupristin/dalfopristin, a new injectable streptogramin with a wide Gram-positive spectrum. Int J Antimicrob Agents 13:21–28

    Article  PubMed  CAS  Google Scholar 

  47. Moellering RC, Linden PK, Reinhardt J, Blumberg EA, Bompart F, Talbot GH (1999) The efficacy and safety of quinupristin/dalfopristin for the treatment of infections caused by vancomycin-resistant Enterococcus faecium. Synercid Emergency-Use Study Group. J Antimicrob Chemother 44:251–261

    Article  PubMed  CAS  Google Scholar 

  48. Nichols RL, Graham DR, Barriere SL et al (1999) Treatment of hospitalized patients with complicated gram-positive skin and skin structure infections: two randomized, multicentre studies of quinupristin/dalfopristin versus cefazolin, oxacillin or vancomycin. Synercid Skin and Skin Structure Infection Group. J Antimicrob Chemother 44:263–273

    Article  PubMed  CAS  Google Scholar 

  49. Meka VG, Pillai SK, Sakoulas G et al (2004) Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J Infect Dis 190:311–317

    Article  PubMed  CAS  Google Scholar 

  50. Fagon J, Patrick H, Haas DW et al (2000) Treatment of gram-positive nosocomial pneumonia. Prospective randomized comparison of quinupristin/dalfopristin versus vancomycin. Nosocomial Pneumonia Group. Am J Respir Crit Care Med 161:753–762

    PubMed  CAS  Google Scholar 

  51. Drew RH, Perfect JR, Srinath L, Kurkimilis E, Dowzicky M, Talbot GH (2000) Treatment of methicillin-resistant staphylococcus aureus infections with quinupristin-dalfopristin in patients intolerant of or failing prior therapy. For the Synercid Emergency-Use Study Group. J Antimicrob Chemother 46:775–784

    Article  PubMed  CAS  Google Scholar 

  52. Carver PL, Whang E, VandenBussche HL, Kauffman CA, Malani PN (2003) Risk factors for arthralgias or myalgias associated with quinupristin-dalfopristin therapy. Pharmacotherapy 23:159–164

    Article  PubMed  CAS  Google Scholar 

  53. Raad I, Hachem R, Hanna H (2004) Relationship between myalgias/arthralgias occurring in patients receiving quinupristin/dalfopristin and biliary dysfunction. J Antimicrob Chemother 53:1105–1108

    Article  PubMed  CAS  Google Scholar 

  54. Stalker DJ, Jungbluth GL (2003) Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Clin Pharmacokinet 42:1129–1140

    Article  PubMed  CAS  Google Scholar 

  55. Weigelt J, Itani K, Stevens D, Lau W, Dryden M, Knirsch C (2005) Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother 49:2260–2266

    Article  PubMed  CAS  Google Scholar 

  56. Rubinstein E, Cammarata S, Oliphant T, Wunderink R (2001) Linezolid (PNU-100766) versus vancomycin in the treatment of hospitalized patients with nosocomial pneumonia: a randomized, double-blind, multicenter study. Clin Infect Dis 32:402–412

    Article  PubMed  CAS  Google Scholar 

  57. Wunderink RG, Rello J, Cammarata SK, Croos-Dabrera RV, Kollef MH (2003) Linezolid vs vancomycin: analysis of two double-blind studies of patients with methicillin-resistant Staphylococcus aureus nosocomial pneumonia. Chest 124:1789–1797

    Article  PubMed  CAS  Google Scholar 

  58. Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ (2003) Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet 42:1411–1423

    Article  PubMed  CAS  Google Scholar 

  59. Rayner CR, Baddour LM, Birmingham MC, Norden C, Meagher AK, Schentag JJ (2004) Linezolid in the treatment of osteomyelitis: results of compassionate use experience. Infection 32:8–14

    Article  PubMed  CAS  Google Scholar 

  60. Razonable RR, Osmon DR, Steckelberg JM (2004) Linezolid therapy for orthopedic infections. Mayo Clin Proc 79:1137–1144

    PubMed  CAS  Google Scholar 

  61. Cook AM, Ramsey CN, Martin CA, Pittman T (2005) Linezolid for the treatment of a heteroresistant Staphylococcus aureus shunt infection. Pediatr Neurosurg 41:102–104

    Article  PubMed  Google Scholar 

  62. Rho JP, Sia IG, Crum BA, Dekutoski MB, Trousdale RT (2004) Linezolid-associated peripheral neuropathy. Mayo Clin Proc 79:927–930

    Article  PubMed  Google Scholar 

  63. Spellberg B, Yoo T, Bayer AS (2004) Reversal of linezolid-associated cytopenias, but not peripheral neuropathy, by administration of vitamin B6. J Antimicrob Chemother 54:832–835

    Article  PubMed  CAS  Google Scholar 

  64. Young LS (2004) Hematologic effects of linezolid versus vancomycin. Clin Infect Dis 38:1065–1066

    Article  PubMed  Google Scholar 

  65. Rao N, Ziran BH, Wagener MM, Santa ER, Yu VL (2004) Similar hematologic effects of long-term linezolid and vancomycin therapy in a prospective observational study of patients with orthopedic infections. Clin Infect Dis 38:1058–1064

    Article  PubMed  CAS  Google Scholar 

  66. Nasraway SA, Shorr AF, Kuter DJ, O’Grady N, Le VH, Cammarata SK (2003) Linezolid does not increase the risk of thrombocytopenia in patients with nosocomial pneumonia: comparative analysis of linezolid and vancomycin use. Clin Infect Dis 37:1609–1616

    Article  PubMed  CAS  Google Scholar 

  67. Kulkarni K, Del Priore LV (2005) Linezolid induced toxic optic neuropathy. Br J Ophthalmol 89:1664–1665

    Article  PubMed  CAS  Google Scholar 

  68. Narita M, Tsuji BT, Yu VL (2007) Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome. Pharmacotherapy 27:1189–1197

    Article  PubMed  CAS  Google Scholar 

  69. Soriano A, Miro O, Mensa J (2005) Mitochondrial toxicity associated with linezolid. N Engl J Med 353:2305–2306

    Article  PubMed  CAS  Google Scholar 

  70. Bernard L, Stern R, Lew D, Hoffmeyer P (2003) Serotonin syndrome after concomitant treatment with linezolid and citalopram. Clin Infect Dis 36:1197

    Article  PubMed  CAS  Google Scholar 

  71. Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI (2004) The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38:1673–1681

    Article  PubMed  CAS  Google Scholar 

  72. Fowler VG, Cosgrove S. Abrutyn E et al (2005) Daptomycin vs standard therapy for Staphylococcus aureus bacteremia (SAB) and infective endocarditis (SAIE). 45th Annual Interscience Congress on Antimicrobial Agents and Chemotherapy, Washington DC

  73. LaPlante KL, Rybak MJ Daptomycin. Antimicrobial therapy and vaccines, vol. II: antimicrobial agents: http://www.antimicrobe.org

  74. Zhanel GG, Homenuik K, Nichol K et al (2004) The glycylcyclines: a comparative review with the tetracyclines. Drugs 64:63–88

    Article  PubMed  CAS  Google Scholar 

  75. Raad I, Darouiche R, Vazquez J et al (2005) Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by gram-positive pathogens. Clin Infect Dis 40:374–380

    Article  PubMed  CAS  Google Scholar 

  76. Seltzer E, Dorr MB, Goldstein BP, Perry M, Dowell JA, Henkel T (2003) Once-weekly dalbavancin versus standard-of-care antimicrobial regimens for treatment of skin and soft-tissue infections. Clin Infect Dis 37:1298–1303

    Article  PubMed  CAS  Google Scholar 

  77. Kaatz GW, Seo SM, Aeschlimann JR, Houlihan HH, Mercier RC, Rybak MJ (1998) Efficacy of LY333328 against experimental methicillin-resistant Staphylococcus aureus endocarditis. Antimicrob Agents Chemother 42:981–983

    PubMed  CAS  Google Scholar 

  78. Gerber J, Smirnov A, Wellmer A et al (2001) Activity of LY333328 in experimental meningitis caused by a Streptococcus pneumoniae strain susceptible to penicillin. Antimicrob Agents Chemother 45:2169–2172

    Article  PubMed  CAS  Google Scholar 

  79. Giamarellou H, O’Riordan W, Harris H, Owen S, Porter S, Loutit J (2003) Phase 3 trial comparing 3–7 days of oritavancin vs. 10–14 days of vancomycin/cephalexin in the treatment of patients with complicated skin and skin structure infections (CSSI). In: Program and abstracts of the 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, 14–17 September 2003. American Society of Microbiology

  80. Barrett JF (2005) Recent developments in glycopeptide antibacterials. Curr Opin Investig Drugs 6:781–790

    PubMed  CAS  Google Scholar 

  81. Shaw JP, Seroogy J, Kaniga K, Higgins DL, Kitt M, Barriere S (2005) Pharmacokinetics, serum inhibitory and bactericidal activity, and safety of telavancin in healthy subjects. Antimicrob Agents Chemother 49:195–201

    Article  PubMed  CAS  Google Scholar 

  82. Hegde SS, Reyes N, Wiens T et al (2004) Pharmacodynamics of telavancin (TD-6424), a novel bactericidal agent, against gram-positive bacteria. Antimicrob Agents Chemother 48:3043–3050

    Article  PubMed  CAS  Google Scholar 

  83. Stryjewski ME, Chu VH, O’Riordan WD et al (2006) Telavancin versus standard therapy for treatment of complicated skin and skin structure infections caused by gram-positive bacteria: FAST 2 study. Antimicrob Agents Chemother 50:862–867

    Article  PubMed  CAS  Google Scholar 

  84. Stryjewski ME, O’Riordan WD, Lau WK et al (2005) Telavancin versus standard therapy for treatment of complicated skin and soft-tissue infections due to gram-positive bacteria. Clin Infect Dis 40:1601–1607

    Article  PubMed  CAS  Google Scholar 

  85. Aneziokoro CO, Cannon JP, Pachucki CT, Lentino JR (2005) The effectiveness and safety of oral linezolid for the primary and secondary treatment of osteomyelitis. J Chemother 17:643–650

    PubMed  CAS  Google Scholar 

  86. Finney MS, Crank CW, Segreti J (2005) Use of daptomycin to treat drug-resistant Gram-positive bone and joint infections. Curr Med Res Opin 21:1923–1926

    Article  PubMed  CAS  Google Scholar 

  87. Antony SJ, Angelos E, Stratton CW (2005) Clinical experience with daptomycin in patients with orthopedic-related infections. 43rd Infectious Diseases Society of America Annual Meeting 2005, San Francisco, CA

  88. Yin LY, Lazzarini L, Li F, Stevens CM, Calhoun JH (2005) Comparative evaluation of tigecycline and vancomycin, with and without rifampicin, in the treatment of methicillin-resistant Staphylococcus aureus experimental osteomyelitis in a rabbit model. J Antimicrob Chemother 55:995–1002

    Article  PubMed  CAS  Google Scholar 

  89. Howden BP, Ward PB, Charles PG et al (2004) Treatment outcomes for serious infections caused by methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility. Clin Infect Dis 38:521–528

    Article  PubMed  CAS  Google Scholar 

  90. Fowler VG Jr, Boucher HW, Corey GR et al (2006) Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355:653–665

    Article  PubMed  CAS  Google Scholar 

  91. Woods CW, Cheng AC, Fowler VG Jr et al (2004) Endocarditis caused by Staphylococcus aureus with reduced susceptibility to vancomycin. Clin Infect Dis 38:1188–1191

    Article  PubMed  Google Scholar 

  92. Chiang FY, Climo M (2003) Efficacy of linezolid alone or in combination with vancomycin for treatment of experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47:3002–3004

    Article  PubMed  CAS  Google Scholar 

  93. FDA (2007) Information for healthcare professionals: linezolid (marketed as Zyvox), 16 March 2007

  94. Falagas ME, Manta KG, Ntziora F, Vardakas KZ (2006) Linezolid for the treatment of patients with endocarditis: a systematic review of the published evidence. J Antimicrob Chemother 58:273–280

    Article  PubMed  CAS  Google Scholar 

  95. Kang SL, Rybak MJ (1997) In-vitro bactericidal activity of quinupristin/dalfopristin alone and in combination against resistant strains of Enterococcus species and Staphylococcus aureus. J Antimicrob Chemother 39(Suppl A):33–39

    Article  PubMed  CAS  Google Scholar 

  96. Tsuji BT, Rybak MJ (2005) Short-course gentamicin in combination with daptomycin or vancomycin against Staphylococcus aureus in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother 49:2735–2745

    Article  PubMed  CAS  Google Scholar 

  97. Grohs P, Kitzis MD, Gutmann L (2003) In vitro bactericidal activities of linezolid in combination with vancomycin, gentamicin, ciprofloxacin, fusidic acid, and rifampin against Staphylococcus aureus. Antimicrob Agents Chemother 47:418–420

    Article  PubMed  CAS  Google Scholar 

  98. Jacqueline C, Caillon J, Le Mabecque V et al (2003) In vitro activity of linezolid alone and in combination with gentamicin, vancomycin or rifampicin against methicillin-resistant Staphylococcus aureus by time-kill curve methods. J Antimicrob Chemother 51:857–864

    Article  PubMed  CAS  Google Scholar 

  99. Moise-Broder PA, Sakoulas G, Eliopoulos GM, Schentag JJ, Forrest A, Moellering RC Jr (2004) Accessory gene regulator group II polymorphism in methicillin-resistant Staphylococcus aureus is predictive of failure of vancomycin therapy. Clin Infect Dis 38:1700–1705

    Article  PubMed  CAS  Google Scholar 

  100. Tsuji BT, Rybak MJ (2006) Etest synergy testing of clinical isolates of Staphylococcus aureus demonstrating heterogeneous resistance to vancomycin. Diagn Microbiol Infect Dis 54:73–77

    Article  PubMed  CAS  Google Scholar 

  101. LaPlante KL, Rybak MJ (2004) Impact of high-inoculum Staphylococcus aureus on the activities of nafcillin, vancomycin, linezolid, and daptomycin, alone and in combination with gentamicin, in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 48:4665–4672

    Article  PubMed  CAS  Google Scholar 

  102. Sakoulas G, Eliopoulos GM, Alder J, Eliopoulos CT (2003) Efficacy of daptomycin in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47:1714–1718

    Article  PubMed  CAS  Google Scholar 

  103. Baltch AL, Ritz WJ, Bopp LH et al (2005) Killing of methicillin-resistant Staphylococcus aureus by daptomycin, gentamicin, and rifampin, singly and in combination, in broth and in human monocyte-derived macrophages, with and without GM-CSF and interferon-γ activation. ICACC 2005, Abstract E-1741

  104. Allen GP, Cha R, Rybak MJ (2002) In vitro activities of quinupristin-dalfopristin and cefepime, alone and in combination with various antimicrobials, against multidrug-resistant staphylococci and enterococci in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 46:2606–2612

    Article  PubMed  CAS  Google Scholar 

  105. Dailey CF, Pagano PJ, Buchanan LV, Paquette JA, Haas JV, Gibson JK (2003) Efficacy of linezolid plus rifampin in an experimental model of methicillin-susceptible Staphylococcus aureus endocarditis. Antimicrob Agents Chemother 47:2655–2658

    Article  PubMed  CAS  Google Scholar 

  106. Kang SL, Rybak MJ, McGrath BJ, Kaatz GW, Seo SM (1994) Pharmacodynamics of levofloxacin, ofloxacin, and ciprofloxacin, alone and in combination with rifampin, against methicillin-susceptible and -resistant Staphylococcus aureus in an in vitro infection model. Antimicrob Agents Chemother 38:2702–2709

    PubMed  CAS  Google Scholar 

  107. Zarrouk V, Bozdogan B, Leclercq R et al (2001) Activities of the combination of quinupristin-dalfopristin with rifampin in vitro and in experimental endocarditis due to Staphylococcus aureus strains with various phenotypes of resistance to macrolide-lincosamide-streptogramin antibiotics. Antimicrob Agents Chemother 45:1244–1248

    Article  PubMed  CAS  Google Scholar 

  108. Sambatakou H, Giamarellos-Bourboulis EJ, Grecka P, Chryssouli Z, Giamarellou H (1998) In-vitro activity and killing effect of quinupristin/dalfopristin (RP59500) on nosocomial Staphylococcus aureus and interactions with rifampicin and ciprofloxacin against methicillin-resistant isolates. J Antimicrob Chemother 41:349–355

    Article  PubMed  CAS  Google Scholar 

  109. Petersen PJ, Labthavikul P, Jones CH, Bradford PA (2006) In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J Antimicrob Chemother 57:573–576

    Article  PubMed  CAS  Google Scholar 

  110. Mercier RC, Kennedy C, Meadows C (2002) Antimicrobial activity of tigecycline (GAR-936) against Enterococcus faecium and Staphylococcus aureus used alone and in combination. Pharmacotherapy 22:1517–1523

    Article  PubMed  CAS  Google Scholar 

  111. Palmer SM, Rybak MJ (1996) Pharmacodynamics of once- or twice-daily levofloxacin versus vancomycin, with or without rifampin, against Staphylococcus aureus in an in vitro model with infected platelet-fibrin clots. Antimicrob Agents Chemother 40:701–705

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lentino, J.R., Narita, M. & Yu, V.L. New antimicrobial agents as therapy for resistant gram-positive cocci. Eur J Clin Microbiol Infect Dis 27, 3–15 (2008). https://doi.org/10.1007/s10096-007-0389-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-007-0389-y

Keywords

Navigation