Skip to main content

Advertisement

Log in

Molecular analysis of Clostridium difficile at a university teaching hospital in Japan: a shift in the predominant type over a five-year period

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Clostridium difficile isolates recovered from patients admitted to a teaching hospital in Japan over a 5-year period were analyzed. Two molecular typing systems, PCR ribotyping and pulsed-field gel electrophoresis (PFGE) analysis, were used. Twenty-six PCR ribotypes were found among the 148 isolates. The predominant type at our hospital appeared to shift during the study period, from PCR ribotype a in 2000 (15/33, 45%) to PCR ribotype f in 2004 (18/28, 64%). By using PFGE with thiourea added to both the gel and running buffer, all 148 Clostridium difficile isolates were successfully classified into 37 types and 61 subtypes. The PCR ribotype f isolates were further classified into four types and 11 subtypes by PFGE. The PFGE patterns of the 11 subtypes differed from each other by only 1 to 4 bands, suggesting that these differences might reflect genetic changes during patient-to-patient transmission over the 5-year period analyzed, and that PCR ribotype f isolates might be outbreak-related. In addition, the PCR ribotype f was identical to the PCR ribotype designated smz, which is reported to have caused multiple outbreaks in Japan. These results confirmed that PCR ribotype f (type smz) has specific virulence or survival factors that make it more likely to cause nosocomial outbreaks at Japanese hospitals. PCR ribotype 027, which has been reported to have caused recent outbreaks in North America and Europe, was recovered from one patient in this study; however, this strain was community-acquired. Our findings emphasize the importance of monitoring specific strains to control and prevent nosocomial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fekety R (1997) Guidelines for the diagnosis and management of Clostridium difficile-associated diarrhea and colitis. Am J Gastroenterol 92:739–750

    PubMed  CAS  Google Scholar 

  2. Salyers AA, Whitt DD (2002) Clostridium difficile and pseudomembranous colitis. In: Bacterial pathogenesis, 2nd edn. A molecular approach. American Society for Microbiology Press, Washington DC, pp 352–362

    Google Scholar 

  3. Kato H, Kato N, Watanabe K, Yamamoto T, Suzuki K, Ishigo S, Kunihiro S, Nakamura I, Killgore GE, Nakamura S (2001) Analysis of Clostridium difficile isolates from nosocomial outbreaks at three hospitals in diverse areas of Japan. J Clin Microbiol 39:1391–1395

    Article  PubMed  CAS  Google Scholar 

  4. Samore M, Killgore G, Johnson S, Goodman R, Shim J, Venkataraman L, Sambol S, DeGirolami P, Tenover F, Arbeit R, Gerding D (1997) Multicenter typing comparison of sporadic and outbreak Clostridium difficile isolates from geographically diverse hospitals. J Infect Dis 176:1233–1238

    Article  PubMed  CAS  Google Scholar 

  5. Stubbs SLJ, Brazier JS, O’Neill GL, Duerden BI (1999) PCR targeted to the 16S–23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37:461–463

    PubMed  CAS  Google Scholar 

  6. Cartwright CP, Stock F, Beekmann SE, Williams EC, Gill VJ (1995) PCR amplification of rRNA intergenic spacer regions as a method for epidemiologic typing of Clostridium difficile. J Clin Microbiol 33:184–187

    PubMed  CAS  Google Scholar 

  7. Bided P, Lalande V, Salauze B, Burghoffer B, Avesani V, Delmee M, Rossier A, Barbut F, Petit JC (2000) Comparison of PCR-ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for typing Clostridium difficile. J Clin Microbiol 38:2484–2487

    Google Scholar 

  8. Kato H, Kato N, Watanabe K, Ueno K, Ushijima H, Hashira S, Abe T (1994) Application of typing by pulsed-field gel electrophoresis to the study of Clostridium difficile in a neonatal intensive care unit. J Clin Microbiol 32:2067–2070

    PubMed  CAS  Google Scholar 

  9. Klaassen CHW, van Haren HA, Horrevorts AM (2002) Molecular fingerprinting of Clostridium difficile isolates: pulsed-field gel electrophoresis versus amplified fragment length polymorphism. J Clin Microbiol 40:101–104

    Article  PubMed  CAS  Google Scholar 

  10. O’Neill GL, Ogunsola FT, Brazier JS, Duerden BI (1996) Modification of a PCR ribotyping method for application as a routine typing scheme for Clostridium difficile. Anaerobe 2:205–209

    Article  CAS  Google Scholar 

  11. Spigaglia P, Mastrantonio P (2003) Evaluation of repetitive element sequence-based PCR as a molecular typing method for Clostridium difficile. J Clin Microbiol 41:2454–2457

    Article  PubMed  CAS  Google Scholar 

  12. Karjalainen T, Saumier N, Barc MC, Delmee M, Collignon A (2002) Clostridium difficile genotyping based on slpA variable region in S-layer gene sequence: an alternative serotyping. J Clin Microbiol 40:2452–2458

    Article  PubMed  CAS  Google Scholar 

  13. Kato H, Yokoyama T, Arakawa Y (2005) Typing by sequencing the slpA gene of Clostridium difficile strains causing multiple outbreaks in Japan. J Med Microbiol 54:167–171

    Article  PubMed  CAS  Google Scholar 

  14. van den Berg RJ, Schaap I, Templeton KE, Klaassen CHW, Kuijper EJ (2006) Typing and subtyping of Clostridium difficile isolates using mutiple locus variable number of tandem repeats analysis (MLVA). J Clin Microbiol, DOI: 10.1128/JCM.02023-06

  15. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    PubMed  CAS  Google Scholar 

  16. Corkill JE, Graham R, Hart CA (2000) Pulsed-field gel electrophoresis of degradation-sensitive DNAs from Clostridium difficile PCR ribotype 1 strains. J Clin Microbiol 38:2791–2792

    PubMed  CAS  Google Scholar 

  17. Gal M, Northey G, Brazier JS (2005) A modified pulsed-field gel electrophoresis (PFGE) protocol for subtyping previously non-PFGE typeable isolates of Clostridium difficile polymerase chain reaction ribotype 001. J Hosp Infect 61:231–236

    Article  PubMed  CAS  Google Scholar 

  18. Loo VG, Poirier L, Miller MA, Oughton M, Libman MD, Michaud S, Bourgault AM, Nguyen T, Frenette C, Kelly M, Vibien A, Brassard P, Fenn S, Dewar K, Harn R, Rene P, Monczak Y, Dascal A (2005) A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 353:2442–2449

    Article  PubMed  CAS  Google Scholar 

  19. Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, Frost E, McDonald LC (2005) Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:1079–1084

    Article  PubMed  CAS  Google Scholar 

  20. McDonald LC, Killgore GE, Thompson A, Owens RC, Kazakova SV, Sambol S, Johnson S, Gerding DN (2005) An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353:2433–2441

    Article  PubMed  CAS  Google Scholar 

  21. Goncalves C, Decre D, Barbut F, Burghoffer B, Petit JC (2004) Prevalence and characterization of a binary toxin (actin-specific ADP-ribosyltransferase) from Clostridium difficile. J Clin Microbiol 42:1933–1939

    Article  PubMed  CAS  Google Scholar 

  22. Stubbs S, Rupnik M, Gibert M, Brazier J, Duerden B, Popoff M (2000) Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiol Lett 186:307–312

    Article  PubMed  CAS  Google Scholar 

  23. Kuijper EJ, van den Berg RJ, Debast S, Visser CE, Veenendaal D, Troelstra A, van der Kooi T, van den Hof S, Notermans DW (2006) Clostridium difficile ribotype 027, toxinotype III, the Netherlands. Emerg Infect Dis 12:827–830

    PubMed  Google Scholar 

  24. Delmee M, Laroche Y, Avesani V, Cornelis G (1986) Comparison of serogrouping and polyacrylamide gel electrophoresis for typing Clostridium difficile. J Clin Microbiol 24:991–994

    PubMed  CAS  Google Scholar 

  25. Kato H, Kato N, Watanabe K, Iwai N, Nakamura H, Yamamoto T, Suzuki K, Kim SM, Chong Y, Wasito EB (1998) Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. J Clin Microbiol 36:2178–2182

    PubMed  CAS  Google Scholar 

  26. Spigaglia P, Mastrantonio P (2002) Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40:3470–3475

    Article  PubMed  CAS  Google Scholar 

  27. Osawa K, Baba C, Ishimoto T, Chida T, Okamura N, Miyake S, Yoshizawa Y, Hospital Infection Control Committee (2003) Significance of methicillin-resistant Staphylococcus aureus (MRSA) survey in a university teaching hospital. J Infect Chemother 9:172–177

    PubMed  Google Scholar 

  28. MacCannell DR, Louie TJ, Gregson DB, Laverdiere M, Labbe AC, Laing F, Henwick S (2006) Molecular analysis of Clostridium difficile PCR ribotype 027 isolates from Eastern and Western Canada. J Clin Microbiol 44:2147–2152

    Article  PubMed  CAS  Google Scholar 

  29. Fawley WN, Parnell P, Verity P, Freeman J, Wilcox MH (2005) Molecular epidemiology of endemic Clostridium difficile infection and the significance of subtypes of the United Kingdom epidemic strain (PCR ribotype 1). J Clin Microbiol 43:2685–2696

    Article  PubMed  CAS  Google Scholar 

  30. Spigaglia P, Cardines R, Rossi S, Menozzi MG, Mastrantonio P (2001) Molecular typing and long-term comparison of Clostridium difficile strains by pulsed-field gel electrophoresis and PCR-ribotyping. J Med Microbiol 50:407–414

    PubMed  CAS  Google Scholar 

  31. Johnson S, Samore MH, Farrow KA, Killgore GE, Tenover FC, Lyras D, Rood JI, DeGirolami P, Baltch AL, Rafferty ME, Pear SM, Gerding DN (1999) Epidemics of diarrhea caused by a clindamycin-resistant strain of Clostridium difficile in four hospitals. N Engl J Med 341:1645–1651

    Article  PubMed  CAS  Google Scholar 

  32. Rupnik M, Kato N, Grabnar M, Kato H (2003) New types of toxin A-negative, toxin B-positive strains among Clostridium difficile isolates from Asia. J Clin Microbiol 41:1118–1125

    Article  PubMed  CAS  Google Scholar 

  33. Asha NJ, Fawley WN, Freeman J, Wilcox MH (2005) Increased rate of DNA recovery from United Kingdom epidemic Clostridium difficile PCR ribotype 1 strains stored cryogenically. J Clin Microbiol 43:5794–5795

    Article  PubMed  CAS  Google Scholar 

  34. Barbut F, Gariazzo B, Bonne L, Lalande V, Burghoffer B, Luiuz R, Petit JC (2007) Clinical features of Clostridium difficile-associated infections and molecular characterization of strains: results of a retrospective study, 2000–2004. Infect Control Hosp Epidemiol 28:131–139

    Article  PubMed  Google Scholar 

  35. Kato H, Ito Y, van den Berg RJ, Kuijper EJ, Arakawa Y (2007) First isolation of Clostridium difficile 027 in Japan. http://www.Eurosurveillance.org/ew/2007/070111.asp. Cited 11 Jan 2007

Download references

Acknowledgement

We would like to thank G. E. Killgore of the Centers for Disease Control and Prevention, USA for providing us the 90023 strain and the reference strain NAP1/027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sawabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawabe, E., Kato, H., Osawa, K. et al. Molecular analysis of Clostridium difficile at a university teaching hospital in Japan: a shift in the predominant type over a five-year period. Eur J Clin Microbiol Infect Dis 26, 695–703 (2007). https://doi.org/10.1007/s10096-007-0355-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-007-0355-8

Keywords

Navigation