Skip to main content
Log in

A third Strang lemma and an Aubin–Nitsche trick for schemes in fully discrete formulation

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this work, we present an abstract error analysis framework for the approximation of linear partial differential equation problems in weak formulation. We consider approximation methods in fully discrete formulation, where the discrete and continuous spaces are possibly not embedded in a common space. A proper notion of consistency is designed, and, under a classical inf–sup condition, it is shown to bound the approximation error. This error estimate result is in the spirit of Strang’s first and second lemmas, but applicable in situations not covered by these lemmas (because of a fully discrete approximation space). An improved estimate is also established in a weaker norm, using the Aubin–Nitsche trick. We then apply these abstract estimates to an anisotropic heterogeneous diffusion model and two classical families of schemes for this model: virtual element and finite volume methods. For each of these methods, we show that the abstract results yield new error estimates with a precise and mild dependency on the local anisotropy ratio. A key intermediate step to derive such estimates for virtual element methods is proving optimal approximation properties of the oblique elliptic projector in weighted Sobolev seminorms. This is a result whose interest goes beyond the specific model and methods considered here. We also obtain, to our knowledge, the first clear notion of consistency for finite volume methods, which leads to a generic error estimate involving the fluxes and valid for a wide range of finite volume schemes. An important application is the first error estimate for multi-point flux approximation L and G methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6(3–4), 405–432 (2002). https://doi.org/10.1023/A:10212911

    Article  MathSciNet  MATH  Google Scholar 

  2. Aavatsmark, I., Barkve, T., Bøe, O., Mannseth, T.: Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods. SIAM J. Sci. Comput. 19(5), 1700–1716 (1998). https://doi.org/10.1137/S1064827595293582

    Article  MathSciNet  MATH  Google Scholar 

  3. Aavatsmark, I., Eigestad, G.T., Mallison, B.T., Nordbotten, J.M.: A compact multipoint flux approximation method with improved robustness. Numer. Methods Partial Differ. Equ. 24(5), 1329–1360 (2008). https://doi.org/10.1002/num.20320

    Article  MathSciNet  MATH  Google Scholar 

  4. Agélas, L., Di Pietro, D.A., Droniou, J.: The G method for heterogeneous anisotropic diffusion on general meshes. ESAIM Math. Model. Numer. Anal. 44(4), 597–625 (2010). https://doi.org/10.1051/m2an/2010021

    Article  MathSciNet  MATH  Google Scholar 

  5. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50(3), 879–904 (2016). https://doi.org/10.1051/m2an./2015090

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. (M3AS) 199(23), 199–214 (2013). https://doi.org/10.1142/S0218202512500492

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014). https://doi.org/10.1142/S021820251440003X

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element method for general second order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016). https://doi.org/10.1142/S0218202516500160

    Article  MathSciNet  MATH  Google Scholar 

  9. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method for Elliptic Problems. Modeling, Simulation and Applications, vol. 11. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-02663-3

    Book  MATH  Google Scholar 

  10. Boffi, D., Di Pietro, D.A.: Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes. ESAIM Math. Model. Numer. Anal. 52(1), 1–28 (2018). https://doi.org/10.1051/m2an/2017036

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner, S.C., Guan, Q., Sung, L.-Y.: Some estimates for virtual element methods. Comput. Methods Appl. Math. 17(4), 553–574 (2017). https://doi.org/10.1515/cmam-2017-0008

    Article  MathSciNet  Google Scholar 

  12. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn, p. xviii++397. Springer, New York (2008). https://doi.org/10.1007/978-0-387-75934-0. ISBN: 978-0-387-75933-3

    Book  Google Scholar 

  13. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2017). https://doi.org/10.1093/imanum/drw036

    Article  MathSciNet  Google Scholar 

  14. Chatzipantelidis, P.: Finite volume methods for elliptic PDE’s: a newapproach. M2AN Math. Model. Numer. Anal. 36(2), 307–324 (2002). https://doi.org/10.1051/m2an:2002014

    Article  MathSciNet  MATH  Google Scholar 

  15. Chou, S.-H., Li, Q.: Error estimates in \(L^2\), \(H^{1}\) and \(L^{\infty }\) in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comput. 69(229), 103–120 (2000). https://doi.org/10.1090/S0025-5718-99-01192-8

    Article  MATH  Google Scholar 

  16. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40. Reprint of the 1978 Original [North-Holland, Amsterdam; MR0520174 (58 #25001)], p. xxviii+530. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). ISBN: 0-89871-514-8

  17. Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016). https://doi.org/10.1051/m2an/2015051

    Article  MathSciNet  MATH  Google Scholar 

  18. Di Pietro, D.A., Droniou, J.: A hybrid high-order method for Leray–Lions elliptic equations on general meshes. Math. Comput. 86(307), 2159–2191 (2017). https://doi.org/10.1142/S0218202517500191

    Article  MathSciNet  MATH  Google Scholar 

  19. Di Pietro, D.A., Droniou, J., Ern, A.: A discontinuous-skeletal method for advection–diffusion–reaction on general meshes. SIAM J. Numer. Anal. 53(5), 2135–2157 (2015). https://doi.org/10.1137/140993971

    Article  MathSciNet  MATH  Google Scholar 

  20. Di Pietro, D.A., Droniou, J., Manzini, G.: Discontinuous skeletal gradient discretisation methods on polytopalmeshes. J. Comput. Phys. 355, 397–425 (2018). https://doi.org/10.1016/j.jcp.2017.11.018

    Article  MathSciNet  MATH  Google Scholar 

  21. Di Pietro, D.A., Ern, A.: Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes. IMA J. Numer. Anal. 37(1), 40–63 (2017). https://doi.org/10.1093/imanum/drw003

    Article  MathSciNet  Google Scholar 

  22. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques and Applications, vol. 69. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-22980-0

    Book  MATH  Google Scholar 

  23. Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014). https://doi.org/10.1007/978-3-319-41640-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Di Pietro, D. A., Tittarelli, R.: An introduction to Hybrid High-Order methods. In: Di Pietro, D. A., Ern, A., Formaggia, L. (eds.) Numerical Methods for PDEs: State of the Art Techniques. Springer (2018). ISBN: 978-3-319-94675

  25. Di Pietro, D.A., Ern, A.: Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Math. Acad. Sci. Paris 353(1), 31–34 (2015). https://doi.org/10.1016/j.crma.2014.10.013

    Article  MathSciNet  MATH  Google Scholar 

  26. Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24(8), 1575–1619 (2014). https://doi.org/10.1142/S0218202514400041

    Article  MathSciNet  MATH  Google Scholar 

  27. Droniou, J., Eymard, R.: A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105, 35–71 (2006). https://doi.org/10.1007/s00211-006-0034-1

    Article  MathSciNet  MATH  Google Scholar 

  28. Droniou, J., Eymard, R.: The asymmetric gradient discretisation method. In: Finite Volumes for Complex Applications VIII-Methods and Theoretical Aspects, vol. 199. Springer Proceedings in Mathematics and Statistics. Springer, Cham, pp. 311–319 (2017)

    Google Scholar 

  29. Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The Gradient Discretisation Method. Mathematics and Applications, vol. 82. Springer, p. 511 (2018). ISBN: 978-3-319-79041-1 (Softcover) 978- 3-319-79042-8 (eBook). https://doi.org/10.1007/978-3-319-79042-8. https://hal.archives-ouvertes.fr/hal-01382358

    Book  Google Scholar 

  30. Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. (M3AS) 20(2), 1–31 (2010). https://doi.org/10.1142/S0218202510004222

    Article  MathSciNet  MATH  Google Scholar 

  31. Droniou, J., Nataraj, N.: Improved L2 estimate for gradient schemes and super-convergence of the TPFAfinite volume scheme. IMA J. Numer. Anal. 38(3), 1254–1293 (2018). https://doi.org/10.1093/imanum/drx028. arxiv: 1602.07359

    Article  MathSciNet  Google Scholar 

  32. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34(150), 441–463 (1980)

    Article  MathSciNet  Google Scholar 

  33. Edwards, M.G., Rogers, C.F.: A flux continuous scheme for the full tensor pressure equation. In: Proceedings of the 4th European Conference on the Mathematics of Oil Recovery, Vol. D. Røros, Norway (1994)

  34. Ern, A., Guermond, J.-L.: Abstract nonconforming error estimates and application to boundary penalty methods for diffusion equations and time-harmonic Maxwell’s equations. Comput. Methods Appl. Math. (2018). https://doi.org/10.1515/cmam-2017-0058

    Article  MathSciNet  Google Scholar 

  35. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Book  Google Scholar 

  36. Ewing, R., Lazarov, R., Lin, Y.: Finite volume element approximations of nonlocal reactive flows in porous media. Numer. Methods Partial Differ. Equ. 16(3), 285–311 (2000). https://doi.org/10.1002/(SICI)1098-2426(200005)16:3%3c285::AID-NUM2%3e3.0.CO;2-3

    Article  MathSciNet  MATH  Google Scholar 

  37. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2010). https://doi.org/10.1093/imanum/drn084

    Article  MathSciNet  MATH  Google Scholar 

  38. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, VII. Techniques of Scientific Computing, Part III, pp. 713–1020. North- Holland, Amsterdam (2000)

    Google Scholar 

  39. Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79(272), 2169–2189 (2010). https://doi.org/10.1090/S0025-5718-10-02360-4

    Article  MathSciNet  MATH  Google Scholar 

  40. Lipnikov, K., Manzini, G.: A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation. J. Comput. Phys. 272, 360–385 (2014). https://doi.org/10.1016/j.jcp.2014.04.021

    Article  MathSciNet  MATH  Google Scholar 

  41. Mishev, I.D.: Finite volume element methods for non-definite problems. Numer. Math. 83(1), 161–175 (1999). https://doi.org/10.1007/s002110050443

    Article  MathSciNet  MATH  Google Scholar 

  42. Stampacchia, G.: Le probléme de Dirichlet pour les èquations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15(fasc. 1), 189–258 (1965)

    Article  MathSciNet  Google Scholar 

  43. Strang, G.: Variational crimes in the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, pp. 689–710 (Proceedings of Symposia, University Maryland, Baltimore, MD, 1972). Academic Press, New York (1972)

    Chapter  Google Scholar 

  44. Strang, G., Fix, G.: An Analysis of the Finite Element Method, 2nd edn, p. x+402. Wellesley-Cambridge Press, Wellesley (2008)

    MATH  Google Scholar 

  45. Tartar, L.: Personal Communication. Dec. 26 (2015)

  46. Wang, J., Ye, X.: A weak Galerkin element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013). https://doi.org/10.1016/j.cam.2012.10.003

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of the first author was supported by Agence Nationale de la Recherche Grants HHOMM (ANR-15-CE40-0005) and fast4hho (ANR-17-CE23-0019). The work of the second author was partially supported by the Australian Government through the Australian Research Council’s Discovery Projects funding scheme (Project Number DP170100605). Fruitful discussions with Simon Lemaire (INRIA Lille - Nord Europe) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Droniou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Pietro, D.A., Droniou, J. A third Strang lemma and an Aubin–Nitsche trick for schemes in fully discrete formulation. Calcolo 55, 40 (2018). https://doi.org/10.1007/s10092-018-0282-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0282-3

Keywords

Mathematics Subject Classification

Navigation