Skip to main content
Log in

Convergence of a lowest-order finite element method for the transmission eigenvalue problem

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

The transmission eigenvalue problem arises in scattering theory. The main difficulty in its analysis is the fact that, depending on the chosen formulation, it leads either to a quadratic eigenvalue problem or to a non-classical mixed problem. In this paper we prove the convergence of a mixed finite element approximation. This approach, which is close to the Ciarlet–Raviart discretization of biharmonic problems, is based on Lagrange finite elements and is one of the less expensive methods in terms of the amount of degrees of freedom. The convergence analysis is based on classical abstract spectral approximation result and the theory of mixed finite element methods for solving the stream function–vorticity formulation of the Stokes problem. Numerical experiments are reported in order to assess the efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

    Google Scholar 

  2. Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42(1), 237–255 (2010)

    Article  MathSciNet  Google Scholar 

  3. Cakoni, F., Monk, P., Sun, J.: Error analysis for the finite element approximation of transmission eigenvalues. Comput. Methods Appl. Math. 14(4), 419–427 (2014)

    Article  MathSciNet  Google Scholar 

  4. Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–145. Academic Press, New York (1974)

    Chapter  Google Scholar 

  5. Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Probl. 26(4), Art. 045011 (2010)

    Article  MathSciNet  Google Scholar 

  6. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)

    Book  Google Scholar 

  7. Han, J., Yang, Y., Bi, H.: A new multigrid finite element method for the transmission eigenvalue problems. Appl. Math. Comput. 292, 96–106 (2017)

    MathSciNet  Google Scholar 

  8. Ji, X., Sun, J., Turner, T.: Algorithm 922: a mixed finite element method for Helmholtz transmission eigenvalues. ACM Trans. Math. Softw. 38(4), Art. 29 (2012)

    Article  Google Scholar 

  9. Ji, X., Sun, J., Xie, H.: A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput. 60(2), 276–294 (2014)

    Article  MathSciNet  Google Scholar 

  10. Ji, X., Xi, Y., Xie, H.: Nonconforming finite element method for the transmission eigenvalue problem. Adv. Appl. Math. Mech. 9(1), 92–103 (2017)

    Article  MathSciNet  Google Scholar 

  11. Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1966)

    MATH  Google Scholar 

  12. Kolata, W.G.: Approximation in variationally posed eigenvalue problems. Numer. Math. 29(2), 159–171 (1977/1978)

    Article  MathSciNet  Google Scholar 

  13. Mercier, B., Osborn, J., Rappaz, J., Raviart, P.A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comput. 36(154), 427–453 (1981)

    Article  MathSciNet  Google Scholar 

  14. Sun, J.: Estimation of transmission eigenvalues and the index of refraction from Cauchy data. Inverse Probl. 27(1), Art. 015009 (2011)

    Article  MathSciNet  Google Scholar 

  15. Sun, J.: Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49(5), 1860–1874 (2011)

    Article  MathSciNet  Google Scholar 

  16. Yang, Y., Bi, H., Li, H., Han, J.: Mixed methods for the Helmholtz transmission eigenvalues. SIAM J. Sci. Comput. 38(3), A1383–A1403 (2016)

    Article  MathSciNet  Google Scholar 

  17. Yang, Y., Bi, H., Li, H., Han, J.: A \(C^0{\rm IPG}\) method and its error estimates for the Helmholtz transmission eigenvalue problem. J. Comput. Appl. Math. 326, 71–86 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Venegas.

Additional information

This research was partially supported by Projects Fondecyt 1180859 and 11160186 and by Basal Project, CMM, Universidad de Chile.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camaño, J., Rodríguez, R. & Venegas, P. Convergence of a lowest-order finite element method for the transmission eigenvalue problem. Calcolo 55, 33 (2018). https://doi.org/10.1007/s10092-018-0276-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0276-1

Keywords

Mathematics Subject Classification

Navigation