Skip to main content
Log in

Numerical approximation of stochastic differential delay equation with coefficients of polynomial growth

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

Although numerical methods of nonlinear stochastic differential delay equations (SDDEs) have been discussed by several authors, there is so far little work on the numerical approximation of SDDE with coefficients of polynomial growth. The main aim of the paper is to investigate convergence in probability of the Euler-Maruyama (EM) approximate solution for SDDE with one-sided polynomial growing drift coefficient and polynomial growing diffusion coefficient. Moreover, we prove the existence-and-uniqueness of almost surely exponentially stable global solution for this nonlinear stochastic delay system. Finally, a computer simulation confirms the efficiency of our numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baker, C.T.H., Buckwar, E.: Exponential stability in p-th mean of solutions and of convergent Euler-type solutions of stochastic delay differential equations. J. Comput. Appl. Math. 184, 404–427 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buckwar, E.: Introduction to the numerical analysis of stochastic delay differential equations. J. Comput. Appl. Math. 125, 297–307 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mao, X.: Exponential stability of equidistant Euler-Maruyama approximations of stochastic differential delay equations. J. Comput. Appl. Math. 200, 297–316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, Z., Zhang, C.: An analysis of stability of Milstein for stochastic differential equation with delay. Comput. Math. Appl. 51, 1445–1452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhou, S., Fang, Z.: Numerical approximation of nonlinear neutral stochastic functional differential equation. J. Appl. Math. Comput. 41, 427–445 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu, F., Mao, X.: Almost sure stability of Euler-Maruyama approximations for stochastic delay differential equations. Numer. Math. 115, 681–697 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, R., Hou, Y.: Convergence and stability of numerical solutions to SDDEs with Markovian switching. Appl. Math. Comput. 175, 1080–1091 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Liu, M., Cao, W., Fan, Z.: Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation. J. Comput. Appl. Math. 170, 255–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)

    Book  MATH  Google Scholar 

  10. Rathinasamy, A., Balachandran, K.: Mean square stability of semi-implicit Euler method for linear stochastic differential equations with multiple delays and Markovian switching. Appl. Math. Comput. 206, 968–979 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Zhang, H., Gan, S., Hu, L.: The split-step backward Euler method for linear stochastic delay differential equations. J. Comput. Appl. Math. 225, 558–568 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhou, S., Wu, F.: Convergence of numerical solutions to neutral stochastic delay differential equation with Markovian switching. J. Comput. Appl. Math. 229, 85–96 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, X., Gan, S.: The improved split-step backward Euler method for stochastic differential delay equations. Int. J. Comput. Math. 88, 2359–2378 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tretyakov, M.V., Zhang, Z.: A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications. SIAM J. Numer. Anal. 51, 3135–3162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mao, X., Szpruch, L.: Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Comput. Appl. Math. 238, 14–28 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Szpruch, L., Mao, X., Higham, D.J., Pan, J.: Numerical simulation of a strongly nonlinear ait-sahalia-type interest rate model. BIT Numer. Math. 51, 405–425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mao, X., Szpruch, L.: Strong convergence rates for backward Euler-Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients. Stoch. Int. J. Prob. Stoch. Proc. 85, 144–171 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhou, S.: Strong convergence and stability of backward Euler Maruyama scheme for highly nonlinear hybrid stochastic differential delay equation, Calcolo, doi:10.1007/s10092-014-0124-x

  19. Higham, D., Mao, X., Stuart, A.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40, 1041–1063 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with nonglobally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467, 1563 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hutzenthaler, M., Jentzen, A., Kloeden, P.: Strong convergence of an explicit numerical method for SDEs with non-globally Lipschitz continuous coefficients. Ann. Appl. Probab. 22, 1611–1641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kumar, C., Sabanis, S.: Strong convergence of Euler approximations of stochastic differential equations with delay under local Lipschitz condition. Stoch. Anal. Appl. 32, 207–228 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mao, X.: Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions. Appl. Math. Comput. 217, 5512–5524 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Milos̆ević, M.: Highly nonlinear neutral stochastic differential equations with time-dependent delay and the Euler-Maruyama method. Math. Comput. Model 54, 2235–2251 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hu, Y., Wu, F.: Stochastic Kolmogorov-type population dynamics with infinite distributed delays. Acta Appl. Math. 110, 1407–1428 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, F., Xu, Y.: Stochastic Lotka-Volterra population dynamics with infinite delay. SIAM J. Appl. Math. 70, 641–657 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mao, X.: Exponential Stability of Stochastic Differential Equation. Dekker, NewYork (1994)

    MATH  Google Scholar 

  28. Mao, X.: Stochastic Differential Equations and Its Application. Horwood, Chichester (1997)

    Google Scholar 

Download references

Acknowledgments

The author expresses her sincere gratitude to two anonymous referees for their detailed comments and helpful suggestions. The financial support from the National Natural Science Foundation of China (Grant No.11301198;11422110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobo Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Hu, C. Numerical approximation of stochastic differential delay equation with coefficients of polynomial growth. Calcolo 54, 1–22 (2017). https://doi.org/10.1007/s10092-016-0173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-016-0173-4

Keywords

Mathematics Subject Classification

Navigation