Skip to main content

Advertisement

Log in

Lagrange–Hermite interpolation on the real semiaxis

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In order to approximate continuous functions on \([0,+\infty )\), we consider a Lagrange–Hermite polynomial, interpolating a finite section of the function at the zeros of some orthogonal polynomials and, with its first \((r-1)\) derivatives, at the point 0. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator. Moreover, we prove optimal estimates for the error of this process in the weighted \(L^p\) and uniform metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balázs, K.: Lagrange and Hermite interpolation processes on the positive real line. J. Approx. Theory 50(1), 18–24 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cvetkovic, A.S., Milovanovic, G.V.: The mathematica package “Orthogonal Polynomials”. Facta Univ. Ser. Math. Inform. 19, 17–36 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Ditzian, Z., Totik, V.: Moduli of Smoothness, Springer Series in Computational Mathematics 9. Springer, New York (1987)

    MATH  Google Scholar 

  4. Erdős, P., Turán, P.: On interpolation. III. Interpolatory theory of polynomials. Ann. Math. (2) 41, 510–553 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  5. Freud, G.: Convergence of the Lagrange interpolation on the infinite interval. Mat. Lapok 18, 289–292 (1967)

    MathSciNet  Google Scholar 

  6. Frammartino, C.: A Nyström method for solving a boundary value. In: Gautchi, W., Mastroianni, G., Rassias, T. (eds.) Approximation and Computation. Springer Optim. Appl. 42, pp. 311–325. Springer, New York (2011)

    Google Scholar 

  7. Kasuga, T., Sakai, R.: Orthonormal polynomials with generalized Freud-type weights. J. Approx. Theory 121, 13–53 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Laurita, C., Mastroianni, G.: \(L^p\)-Convergence of lagrange interpolation on the semiaxis. Acta Math. Hungar. 120(3), 249–273 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Levin, A.L., Lubinsky, D.S.: Christoffel functions, orthogonal polynomials, and Nevai’s conjecture for Freud weights. Constr. Approx. 8(4), 463–535 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Levin, A.L., Lubinsky, D.S.: Orthogonal Polynomials for Exponential Weights, CSM Books in Mathematics/Ouvrages de Mathématiques de la SMC, 4. Springer, New York (2001)

    Book  Google Scholar 

  11. Levin, A.L., Lubinsky, D.S.: Orthogonal polynomials for weights \(x^{2\rho } e^{-2Q(x)}\) on \([0, d)\). J. Approx. Theory 134(2), 199–256 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Levin, A.L., Lubinsky, D.S.: Orthogonal polynomials for weights \(x^{2\rho } e^{-2Q(x)}\) on \([0, d)\), II. J. Approx. Theory 139(1), 107–143 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lubinsky, D.S., Mastroianni, G.: Mean convergence of extended Lagrange interpolation with Freud weights. Acta Math. Hungar. 84(1–2), 47–63 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lubinsky, D.S., Mastroianni, G.: Converse quadrature sum inequalities for Freud weights. II. Acta Math. Hungar. 96(1–2), 147–168 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Mastroianni, G., Milovanović, G.V.: Interpolation Processes. Basic Theory and Applications, Springer Monographs in Mathematics. Springer, Berlin (2008)

    MATH  Google Scholar 

  16. Mastroianni, G., Milovanovic, G.V.: Some numerical methods for second kind Fredholm integral equation on the real semiaxis. IMA J. Numer. Anal. 29, 1046–1066 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mastroianni, G., Milovanović, G.V., Notarangelo, I.: On an interpolation process of Lagrange-Hermite type. Publication de l’Institut Mathématique Nouvelle série tome 91(105), 163–175 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Mastroianni, G., Notarangelo, I.: A Lagrange-type projector on the real line. Math. Comput. 79(269), 327–352 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mastroianni, G., Notarangelo, I.: Some Fourier-type operators for functions on unbounded intervals. Acta Math. Hungar. 127(4), 347–375 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mastroianni, G., Occorsio, D.: Lagrange interpolation at Laguerre zeros in some weighted uniform spaces. Acta Math. Hungar. 91(1–2), 27–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mastroianni, G., Szabados, J.: Polynomial approximation on the real semiaxis with generalized Laguerre weights. Stud. Univ. Babes-Bolyai LII(Number 4), 89–103 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Mastroianni, G., Vértesi, P.: Fourier sums and Lagrange interpolation on \((0,+\infty )\) and \((-\infty,+\infty )\). In: Govil, N.K., Mhaskar, H.N., Mohapatra, R.N., Nashed, Z., Szabados, J. (eds.) Frontiers in Interpolation and Approximation, Dedicated to the Memory of A. Sharma, pp. 307–344. Taylor & Francis Books, Boca Raton, Florida (2006)

    Chapter  Google Scholar 

  23. Muckenhoupt, B., Wheeden, L.: Two weight function norm inequalities for the Hardy-Littlewood maximal function and the Hilbert transform. Stud. Math. 55(3), 279–294 (1976)

    MathSciNet  MATH  Google Scholar 

  24. Nevai, P.: On Lagrange interpolation based on Laguerre roots [Hungarian]. Mat. Lapok 22, 149–164 (1971)

    MathSciNet  Google Scholar 

  25. Nevai, P.: On the convergence of Lagrange interpolation based on Laguerre roots, [Russian]. Publ. Math. 20, 235–239 (1973)

    MathSciNet  Google Scholar 

  26. Nevai, P.: Lagrange interpolation at zeros of orthogonal polynomials. In: Lorentz, G.G. (ed.) Approximation Theory, pp. 163–201. Academic Press, New York (1976)

    Google Scholar 

  27. Shen, J., Wang, L.-L.: Some recent advances on spectral methods for unbounded domains. Commun. Comput. Phys. 5(2–4), 195–241 (2009)

    MathSciNet  Google Scholar 

  28. Szabados, J.: Weighted Lagrange and Hermite-Fejér interpolation on the real line. J. Inequal. Appl. 1(2), 99–123 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for carefully reading the manuscript and for their suggestions which contributed in improving the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Mastroianni.

Additional information

The first author and the third authors were partially supported by University of Basilicata (local funds). The second author was supported by University of Basilicata (local funds) and by National Group of Computing Science GNCS–INDAM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastroianni, G., Notarangelo, I. & Pastore, P. Lagrange–Hermite interpolation on the real semiaxis. Calcolo 53, 235–261 (2016). https://doi.org/10.1007/s10092-015-0147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-015-0147-y

Keywords

Mathematics Subject Classification

Navigation