Skip to main content
Log in

A mixed formulation for the direct approximation of the control of minimal \(L^2\)-norm for linear type wave equations

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

This paper deals with the numerical computation of null controls for the wave equation with a potential. The goal is to compute approximations of controls that drive the solution from a prescribed initial state to zero at a large enough controllability time. In [Cîndea, Fernández-Cara & Münch, Numerical controllability of the wave equation through primal methods and Carleman estimates, 2013], a so called primal method is described leading to a strongly convergent approximation of boundary controls: the controls minimize quadratic weighted functionals involving both the control and the state and are obtained by solving the corresponding optimality condition. In this work, we adapt the method to approximate the control of minimal square-integrable norm. The optimality conditions of the problem are reformulated as a mixed formulation involving both the state and its adjoint. We prove the well-posedeness of the mixed formulation (in particular the inf-sup condition) then discuss several numerical experiments. The approach covers both the boundary and the inner controllability. For simplicity, we present the approach in the one dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. The condition number \(\kappa (\mathcal {M}_h)\) of any square matrix \(\mathcal {M}_h\) is defined by \(\kappa (\mathcal {M}_h)=\vert \vert \vert \mathcal {M}_h\vert \vert \vert _2 \vert \vert \vert \mathcal {M}_h^{-1}\vert \vert \vert _2\) where the norm \(\vert \vert \vert \mathcal {M}_h\vert \vert \vert _2\) stands for the largest singular value of \(\mathcal {M}_h\).

References

  1. Asch, M., Lebeau, G.: Geometrical aspects of exact boundary controllability for the wave equation—a numerical study. ESAIM Control Optim. Calc. Var. 3, 163–212 (electronic) (1998). doi:10.1051/cocv:1998106

  2. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992). doi:10.1137/0330055

  3. Bernadou, M., Hassan, K.: Basis functions for general Hsieh–Clough–Tocher triangles, complete or reduced. Int. J. Numer. Methods Eng. 17(5), 784–789 (1981). doi:10.1002/nme.1620170510

  4. Bourquin, F.: Approximation theory for the problem of exact controllability of the wave equation with boundary control. In: Second International Conference on Mathematical and Numerical Aspects of Wave Propagation (Newark, DE, 1993), pp. 103–112. SIAM, Philadelphia (1993)

  5. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991). doi:10.1007/978-1-4612-3172-1

  6. Castro, C.: Exact controllability of the 1-D wave equation from a moving interior point. ESAIM Control Optim. Calc. Var. 19(1), 301–316 (2013). doi:10.1051/cocv/2012009

  7. Castro, C., Cîndea, N., Münch, A.: Controllability of the linear wave equation with moving inner actions. Preprint. http://hal.archives-ouvertes.fr/hal-00927076

  8. Castro, C., Micu, S., Münch, A.: Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J. Numer. Anal. 28(1), 186–214 (2008). doi:10.1093/imanum/drm012

  9. Chapelle, D., Bathe, K.J.: The inf-sup test. Comput. Struct. 47(4–5), 537–545 (1993). doi:10.1016/0045-7949(93)90340-J

  10. Ciarlet, P.G.: The finite element method for elliptic problems. Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). doi:10.1137/1.9780898719208. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]

  11. Cîndea, N., Fernández-Cara, E., Münch, A.: Numerical controllability of the wave equation through primal methods and carleman estimates. ESAIM Control Optim. Calc. Var. 19, 1076–1108 (2013). doi:10.1051/cocv/2013046

  12. Cîndea, N., Micu, S., Tucsnak, M.: An approximation method for exact controls of vibrating systems. SIAM J. Control Optim. 49(3), 1283–1305 (2011). doi:10.1137/09077641X

  13. Daniel, J.W.: The Approximate Minimization of Functionals. Prentice-Hall Inc., Englewood Cliffs (1971)

    MATH  Google Scholar 

  14. Dunavant, D.A.: High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng. 21(6), 1129–1148 (1985). doi:10.1002/nme.1620210612

  15. Ervedoza, S., Zuazua, E.: On the numerical approximation of exact controls for waves. Springer Briefs in Mathematics, vol. XVII (2013)

  16. Fernández-Cara, E., Münch, A.: Strong convergence approximations of null controls for the 1D heat equation. SeMA J. 61(1), 49–78 (2013)

  17. Fortin, M., Glowinski, R.: Augmented Lagrangian methods. Studies in Mathematics and its Applications, vol. 15. North-Holland Publishing Co., Amsterdam (1983). Applications to the numerical solution of boundary value problems. Translated from the French by B. Hunt and D. C, Spicer

  18. Glowinski, R.: Numerical methods for fluids. Part 3. Handbook of Numerical Analysis, vol. IX. North-Holland, Amsterdam (2003)

  19. Glowinski, R., Li, C.H., Lions, J.L.: A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Jpn. J. Appl. Math. 7(1), 1–76 (1990). doi:10.1007/BF03167891

  20. Glowinski, R., Lions, J.L.: Exact and approximate controllability for distributed parameter systems. In: Acta Numerica, pp. 159–333. Cambridge Univ. Press, Cambridge (1995)

  21. Glowinski, R., Lions, J.L., He, J.: Exact and approximate controllability for distributed parameter systems: a numerical approach. Encyclopedia of Mathematics and its Applications, vol. 117. Cambridge University Press, Cambridge (2008). doi:10.1017/CBO9780511721595

  22. Gunzburger, M., Hou, L.S., Ju, L.: A numerical method for exact boundary controllability problems for the wave equation. Comput. Math. Appl. 51(5), 721–750 (2006). doi:10.1016/j.camwa.2006.03.003

  23. Ju, L., Gunzburger, M.D., Hou, L.S.: Approximation of exact boundary controllability problems for the 1-D wave equation by optimization-based methods. In: Recent Advances in Scientific Computing and Partial Differential Equations (Hong Kong, 2002), Contemporary Mathematics, vol. 330, pp. 133–153. American Mathematical Society, Providence (2003). doi:10.1090/conm/330/05888

  24. Komornik, V.: Exact controllability and stabilization: the multiplier method. RAM: Research in Applied Mathematics. Masson, Paris (1994)

  25. Komornik, V., Loreti, P.: Observability of discretized wave equations. Bol. Soc. Parana. Mat. (3) 25(1–2), 67–76 (2007). doi:10.5269/bspm.v25i1-2.7430

  26. Lasiecka, I., Triggiani, R., Yao, P.F.: Exact controllability for second-order hyperbolic equations with variable coefficient-principal part and first-order terms. In: Proceedings of the Second World Congress of Nonlinear Analysts, Part 1 (Athens, 1996), vol. 30, pp. 111–122, (1997). doi:10.1016/S0362-546X(97)00004-7

  27. Lebeau, G., Nodet, M.: Experimental study of the HUM control operator for linear waves. Exp. Math. 19(1), 93–120 (2010). http://projecteuclid.org/getRecord?id=euclid.em/1268404805

  28. Lions, J.L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 8. Masson, Paris (1988). Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch.

  29. Loreti, P., Mehrenberger, M.: An Ingham type proof for a two-grid observability theorem. ESAIM Control Optim. Calc. Var. 14(3), 604–631 (2008). doi:10.1051/cocv:2007062

  30. Meyer, A.: A simplified calculation of reduced hct-basis functions in a finite element context. Comput. Methods Appl. Math. 12(4), 486–499 (2012). doi:10.2478/cmam-2011-0023

  31. Münch, A.: A uniformly controllable and implicit scheme for the 1-D wave equation. Math. Model. Numer. Anal. 39(2), 377–418 (2005). doi:10.1051/m2an:2005012

  32. Pedregal, P., Periago, F., Villena, J.: A numerical method of local energy decay for the boundary controllability of time-reversible distributed parameter systems. Stud. Appl. Math. 121(1), 27–47 (2008). doi:10.1111/j.1467-9590.2008.00406.x

  33. Periago, F.: Optimal shape and position of the support for the internal exact control of a string. Systems Control Lett. 58(2), 136–140 (2009). doi:10.1016/j.sysconle.2008.08.007

  34. Yao, P.F.: On the observability inequalities for exact controllability of wave equations with variable coefficients. SIAM J. Control Optim. 37(5), 1568–1599 (1999). doi:10.1137/S0363012997331482

  35. Zhang, X.: Explicit observability estimate for the wave equation with potential and its application. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456(1997), 1101–1115 (2000). doi:10.1098/rspa.2000.0553

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Münch.

Appendix: numerical tables

Appendix: numerical tables

See Tables 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, and 37.

Table 25 Example EX1—BFS element—\(r=10^{-4}\)
Table 26 Example EX1—BFS element—\(r=h^2\)
Table 27 Example EX1—BFS element—\(r=10^2\)
Table 28 Example EX1—HCT element—uniform mesh—\(r=10\)
Table 29 Example EX1—HCT element—uniform mesh—\(r=h^2\)
Table 30 Example EX1—HCT element—uniform mesh—\(r=10^{-4}\)
Table 31 Example EX1—HCT element—non uniform mesh—\(r=1\)
Table 32 Example EX1—HCT element—non uniform mesh—\(r=10^{-2}\)
Table 33 Example EX2—HCT element—uniform mesh—\(r=1\)
Table 34 Example EX2—HCT element—uniform mesh—\(r=10^{-2}\)
Table 35 Example EX3—BFS element—\(r=10^{-2}\)
Table 36 Example EX3—HCT element—uniform mesh—\(r=10^{-2}\)
Table 37 Example EX3—HCT element—non uniform mesh—\(r=10^{-2}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cîndea, N., Münch, A. A mixed formulation for the direct approximation of the control of minimal \(L^2\)-norm for linear type wave equations. Calcolo 52, 245–288 (2015). https://doi.org/10.1007/s10092-014-0116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-014-0116-x

Keywords

Mathematics Subject Classification (2000)

Navigation