Skip to main content
Log in

Class 2+1 Hybrid BDF-Like methods for the numerical solutions of ordinary differential equations

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this article, the details of new hybrid methods have been presented to solve systems of ordinary differential equations (ODEs). These methods are based on backward differentiation formulae (BDF) where one additional stage point (or off-step point) and two step points have been used in the first derivative of the solution to improve the absolute stability regions compared with some existing methods such as BDF, extended BDF (EBDF) and modified EBDF (MEBDF). Stability domains of our new methods have been obtained showing that these methods, we say Class 2+1 Hybrid BDF-Like methods, are A-stable for order p, p=3,4, and A(α)-stable for order p, p=5, 6, 7, 8. Numerical results are also given for five test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problem. Springer, Berlin (1996)

    Google Scholar 

  2. Burrage, K., Butcher, J.C., Chipman, F.H.: An implementation of singly-implicit Runge-Kutta methods. BIT Numer. Math. 20, 326–340 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burrage, K.: A special family of Runge-Kutta methods for solving stiff differential equations. BIT Numer. Math. 18, 22–41 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Butcher, J.C., Wright, W.M.: Applications of doubly companion matrices. Appl. Numer. Math. 56, 358–373 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alexander, R.: Diagonally implicit Runge-Kutta methods for stiff ODEs. SIAM J. Numer. Anal. 14, 1006–10021 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Butcher, J.C., Diamantakis, M.: DESIRE: Diagonally extended singly-implicit Runge-Kutta effective order methods. Numer. Algorithms 17, 121–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Butcher, J.C., Cash, J.R., Diamantakis, M.: DESI methods for stiff initial value problems. ACM Trans. Math. Softw. 22, 401–422 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diamantakis, M.: Diagonally extended singly-implicit Runge-Kutta methods for stiff IVPs. Ph.D. Thesis, Imperial College, London, 1995

  9. Psihoyios, G.: Solving time dependent PDEs via an improved modified extended BDF scheme. Appl. Math. Comput. 184, 104–115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cash, J.R.: Modified extended backward differentiation formulae for the numerical solution of stiff initial value problems in ODEs and DAEs. J. Comput. Appl. Math. 125, 117–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cash, J.R., Psihoyios, G.-Y.: The MOL solution of time dependent partial differential equations. Comput. Math. Appl. 31(11), 69–78 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cash, J.R., Considine, S.: An MEBDF code for stiff initial value problem. ACM Trans. Math. Softw. 18, 142–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cash, J.R.: On the integration of stiff systems of ODEs using modified extended backward differentiation formula. Comput. Math. Appl. 9, 645–657 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cash, J.R.: Second derivative extended backward differentiation formulas for the numerical integration of stiff systems. SIAM J. Numer. Anal. 18(2), 21–36 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cash, J.R.: On the integration of stiff systems of ODEs using extended backward differentiation formula. Numer. Math. 34(2), 235–246 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hojjati, G., et al.: A-EBDF: an adaptive method for numerical solution of stiff systems of ODEs. Math. Comput. Simul., 66, 33–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ebadi, M., Gokhale, M.Y.: Hybrid BDF methods for the numerical solutions of ordinary differential equations. Numer. Algorithms 55, 1–17 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Springer, Berlin (1992)

    Google Scholar 

  19. Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. Fundamentals of Algorithms. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  20. Lambert, J.D.: Computational Methods in Ordinary Differential Equations, pp. 143–144. Wiley, London (1972)

    Google Scholar 

  21. Javidi, M.: A numerical solution of Burgers’ equation based on modified extended BDF scheme. Int. Math. Forum 1(32), 1565–1570 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Diamantakis, M.T.: The NUMOL solution of time dependent PDEs using DESI Runge-Kutta formulae. Appl. Numer. Math. 17, 235–249 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Toshyuki, K.: IMEX Runge-Kutta schemes for reaction-diffusion equations. J. Comput. Appl. Math. 215, 182–195 (2008)

    Article  MathSciNet  Google Scholar 

  24. Wu, X.-Y.: A sixth-order A-stable explicit one-step method for stiff systems. Comput. Math. Appl. 35(9), 59–64 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, S.J.Y.: Implementation of general linear methods for stiff ordinary differential equations. Ph.D. Thesis, Department of Mathematics, Auckland University (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ebadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebadi, M., Gokhale, M.Y. Class 2+1 Hybrid BDF-Like methods for the numerical solutions of ordinary differential equations. Calcolo 48, 273–291 (2011). https://doi.org/10.1007/s10092-011-0038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-011-0038-9

Keywords

Mathematics Subject Classification

Navigation